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Deterministic and Stochastic Models for HIV-1 Dynamics
Amy Creel

Department of Mathematics, University of Mary Washington, Fredericksburg, VA
Advisor: Dr. Leo Lee

Abstract

In this research project, I investigated deterministic and stochastic versions of the
T , T ∗, VI, VNI model for Human Immunodeficiency Virus Type 1 (HIV-1) dynamics.
Numerical techniques are used to obtain an approximate solution to the deterministic
model. Patient data is introduced, and numerical methods are used to find an ap-
proximate solution to the stochastic system. These results demonstrate the behavior
of HIV-1 in an infected patient under the effects of reverse transcriptase and protease
inhibitors, and illustrate how the addition of randomness to the constants in the model
impact the development of HIV-1 in a given patient.

Deterministic Model

The model investigated in this project is one that has been a basis for many mathe-
matical studies of HIV-1 Dynamics, and considers four populations: activated CD4+
T cells that are susceptible to infection (T ), productively infected CD4+ T cells (T ∗),
infectious virus particles (VI) and noninfectious virus particles (VNI). The following
system of equations represents the change of these populations under the effects of
reverse transcriptase (RT) and protease inhibitors:

dT
dt
= λ − dT − (1 − κ)kVIT

dT ∗

dt
= (1 − κ)kVIT − δT ∗

dVI

dt
= (1 − η)NTδT ∗ − cVI

dVNI

dt
= ηNTδT ∗ − cVNI

Each of the constants in the model (λ, d, k, δ, NT , c, κ, and η) are positive values.
The following table contains the values and units of these constants along with their
interpretations in the model.

Parameter Value Units Interpretation
λ 0.1089 cells per day Healthy T-cell birth rate.
d 0.01089 1 / day Healthy T-cell death rate.
k 1.179 × 10−3 1 / (virions · day) Infection rate of T-cells.
δ 0.366 1 / day Infected T-cell death rate.

NT 4246.4 virions / cell Virus production rate.
c 3.074 1 / day Viral clearance rate.
κ 0.6 - RT inhibitor efficacy.
η 0.6 - Protease inhibitor efficacy.

Existence and Uniqueness

Before solving this system, we need to show that a unique system to our initial value
problem exists. To do so, we make use of the Picard Lindelöf Theorem.

Theorem 1. (Picard Lindelöf Theorem) Let n ∈ N and x0 ∈ R
n be given. Assume

the function f : Rn×R→ Rn is locally Lipschitz in its first argument and continuous in
its second argument. Then there exists t∗ > 0 and a unique function x : [0, t∗] → Rn

satisfying
x′(t) = f (x(t), t)

for every t ∈ [0, t∗] and the initial condition x(0) = x0.

Note that our system of equations is autonomous since it does not explicitly depend
on the dependent variable t. In our system, let x and f (x) be defined as

x =


T
T ∗

VI

VNI

 and f (x) =


λ − dT − (1 − κ)kVIT

(1 − κ)kVIT − δT ∗

(1 − η)NTδT ∗ − cVI

ηNTδT ∗ − cVNI

 .
The Jacobian matrix is then given by

−d − (1 − κ)kVI 0 −(1 − κ)kT 0
(1 − κ)kVI −δ (1 − κ)kT 0

0 (1 − η)NTδ −c 0
0 ηNTδ 0 −c

 .
Note that the partial derivatives of f exist and are continuous, which implies that f
is Lipschitz continuous. Therefore, there exists a unique solution to our system on
some interval [0, t∗].

Numerical Solution
Now that we have verified that a unique solution to our system of equation exists, we
solve the system using a predictor-corrector method that combines the explicit four-
step Adams-Bashforth Method and the implicit three-step Adams-Moulton Method,
and uses the Runge-Kutta Method of order four to obtain its starting values.
With initial conditions T0 = 10, T ∗0 = 0, VI0 = 0.1, and VNI0 = 0 and parameter values
λ = 0.1089, d = 0.01089, k = 1.179× 10−3, δ = 0.366, NT = 4246.4, c = 3.074, κ = 0.6,
and η = 0.6, the following approximation was obtained:
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Stochastic Model
Realistically, the constants and initial values of this model will not have a single, fixed
value; they will vary within the population. The use of a stochastic system will take
this random variation into account by replacing each of the constants and initial con-
ditions of the model with random variables.
Data for 176 HIV-infected persons was retrospectively collected from medical records
of Severance Hospital, South Korea. This data was used to identify the probability
distributions of each random variable in the model. The Method of Moments was
used to obtain parameter estimates for each of these distributions.

Random Variable Estimated Probability Distribution and Parameter Values
T0 Gamma(α = 1.802, β = 141.4863)
T ∗0 Exponential(β = 0.2413)
VI0 Gamma(α = 0.013898, β = 0.26095)
λ Exponential (β = 0.2691)
d Exponential (β = 135.3297)
k Gamma (α = 0.5086, β = 0.00796)
δ Exponential (β = 51.7362)

NT Exponential (β = 0.02015)
c Gamma (α = 0.5675, β = 29.3465)
κ Uniform (α = 0.6, β = 0.8)
η Uniform (α = 0, β = 0.6)

Monte Carlo Method

For each random variable in the model, n independent random observations
X1, X2, . . . , Xn were generated and used to obtain a solution to the model. The ex-
pected value of these n solutions is the solution to our stochastic model by the Monte
Carlo Method. Below is an example of an approximate solution obtained using the
Monte Carlo Method.

T0 T ∗0 VI0 VNI0

82.2732 0.1557 8.6507 × 10136 8.7534

λ d k δ NT c κ η

8.7534 0.0154 0.0016 0.1639 99.1055 3.8313 0.7089 0.59862

This patient has an extremely small amount of infectious virus initially present in the
body. However, the high viral production rate (NTδ) causes the virus concentration
to grow fairly quickly. This high viral production rate is then contrasted by a relatively
high viral clearance rate (c), which causes the virus population to hit a peak and begin
to decrease. The behavior of VI and VNI in this model is similar to the behavior we
would expect based on the numerical approximation to the deterministic model seen
previously.

Conclusion

The results of this project display the development of HIV-1 in an infected patient
under the effect of reverse transcriptase and protease inhibitors. These results are
made more practical with the inclusion of an element of randomness in the stochastic
system of equations. Obtaining a solution to the stochastic model using the Monte
Carlo Method gives us a better understanding of how HIV-1 Dynamics may change
in a given patient due to differences in model parameters caused by the randomness
that occurs biologically.
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