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ABSTRACT 

Agricultural pest species are a growing concern due to increasing resistance to 

neonicotinoids. Sulfoxaflor, a sulfoximine pesticide recently approved by the USEPA, was 

developed to replace neonicotinoids and has shown to have high efficacy in the field. 

Environmental introduction is primarily caused by wet spray application or agricultural 

runoff. Sulfoxaflor binds to insect nicotinic acetylcholine receptors, triggering 

overactivation that leads to paralysis and death. Preliminary exposure studies have shown 

neonatal effects and development of liver tumors in rats and mice at 500 and 750 ppm, 

respectively. Little research into the effects on aquatic nontarget invertebrates has been 

conducted; as such, this research aims to identify potential physiological and behavioral 

impacts of sulfoxaflor on juvenile Daphnia magna at concentrations of 0, 0.1, 0.5, 1, 5, 

and 10 µg/L. HPLC analysis indicated that sulfoxaflor does not readily degrade under 

laboratory conditions. Despite low sample sizes, trends in increased mortality and length 

of apical spine were observed for 7-day exposures. Potential decreases in heart rate and 

mobility parameters such as average speed, acceleration, and total distance after 7-day 

exposures were also identified. This research aims to help elucidate the potential sublethal 

impacts of sulfoxaflor on non-target aquatic invertebrates at environmentally relevant 

concentrations. 
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CHAPTER 1 – INTRODUCTION 

PESTICIDES 

As worldwide agriculture grows to meet increasing food demands, insect pest 

populations have proven to be a significant concern. Pesticides such as neonicotinoids, a 

recently developed class of insecticides, have been used to treat and reduce the impact of 

pests on agricultural yields. Due to the prevalence and continued use of these insecticides, 

observed resistance to these chemicals is also beginning to rise (Oliveira et al. 2014; Xu et 

al. 2016). In addition to pest resistance, studies have shown that these pesticides cause 

significant harm to bee populations, pollinators that are vital to agriculture and the 

environment (Blacquière et al. 2012). Imidacloprid and clothianidin are some of the most 

widely used neonicotinoid pesticides, with over 2 million pounds and 3.5 million pounds 

respectively being applied across the US in 2014 (USGS 2016). Imidacloprid has 

widespread use in agriculture including applications on cotton, corn, wheat, soybeans, 

various vegetable crops, and grape or other fruit orchards (USGS 2016). Clothianidin is 

primarily used on soybeans and corn, with potential for use on other crops including 

vegetables and fruit (USGS 2016). Both pesticides have been shown to break down into 

metabolites that have cyto- and genotoxic effects, suppress immune systems, and stunt 

growth and reproduction in non-target vertebrate organisms at environmentally relevant 

concentrations (Gibbons et al. 2015). Reduced sperm count in rats was observed with 

clothianidin at 32 mg/kg bw/d (Bal et al. 2012). Treatments between 31.2 and 36.8 mg/kg 

bw/d of clothianidin was also shown to decrease body weight and sexual maturation in 

males and increase the number of stillbirths in females (EPA 2010). In red-legged 

partridges (Alectoris rufa), imidacloprid caused a reduction in egg width and eggshell 
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thickness, decreased chick survival rates, and reduced egg fertility at 31.9 mg/kg/day 

(Lopez-Antia et al. 2013). After 30 hours of exposure to 0.1 mg/L of fipronil, zebrafish 

larvae demonstrated notochord degeneration, decreased body length, and decreased 

locomotion (Stehr et al. 2006). While not specifically a neonicotinoid, fipronil has many 

of the same practical applications and similarly targets insect nicotinic acetylcholine 

receptors. Imidacloprid has been proven in acute exposures (48 hours) to induce oxidative 

stress on Daphnia magna at concentrations as low as 13-16.5 mg/L (Qi et al. 2018). 

SULFOXAFLOR 

In order to address increased insect resistance to neonicotinoid pesticides, sulfoxaflor 

was developed by Dow AgroSciences under the name of IsoclastTM Active as the first 

sulfoximine pesticide (Dow 2014). It is marketed as a valuable addition in rotational use as 

insects currently resistant to other pesticides showed no signs of cross-resistance to 

sulfoxaflor in preliminary studies (Dow 2014). In May 2013, the EPA approved 

registration of sulfoxaflor, but the Ninth Circuit Court of Appeals responded to the 

complaints of pollinator advocates who argued that the pesticide was causing mass 

mortality in bee populations and vacated the registration in November 2015 (EPA 2019). 

The EPA was instructed to supply stricter policies for use, more evidence supporting 

approval, and increased protection of bees (EPA 2019). In October 2016, the EPA 

approved the final registration of sulfoxaflor with restrictions on which crops sulfoxaflor 

is permitted to be used and the establishment of specific time frames for application: on 

crops non-attractive to bees, on crops harvested before bloom, and on bee-attractive crops 

post-bloom only (EPA 2019).  
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As sulfoxaflor is required to undergo a “drying period” after being applied as a wet 

spray, rain events are likely the main factor that introduces the pesticide into aquatic 

environments. Sulfoxaflor has a half-life of 11-64 days in aquatic environments, and 

application rates on crops range between 12 to 150 grams of active ingredient per hectare 

(Dow 2014). A benefit of sulfoxaflor in crop application is that it can impart similar 

benefits while requiring lower usage rates (Dow 2014). Sulfoxaflor binds to insect nicotinic 

acetylcholine receptors (nAChR), causing overactivation of the receptors which leads to 

paralysis through the central nervous system and ultimately death (Babcock et al. 2011; 

Sparks et al. 2013).  

Due to the relatively recent development of sulfoxaflor, no studies have been done to 

examine the presence and concentrations of sulfoxaflor in aquatic environments. 

Preliminary studies conducted by Dow AgroSciences for the potential toxicological effects 

were provided for rats and mice, showing neonatal effects in rats and the development of 

liver tumors in both rats and mice after prolonged dietary exposure at 500 and 750 ppm, 

respectively (Lebaron et al. 2014). Slight effects to the growth of fathead minnow and 

moderate oral toxicity in birds were also identified above 5.05 mg/L and at 5,260 mg/kg, 

respectively (Dow 2014). While significant testing on non-target organisms (excluding 

bees) has yet to be performed, preliminary research performed by Dow AgroSciences on 

Daphnia magna has shown an acute 48-hour EC50 of > 399 mg/L, and a chronic 21-day 

NOEC of 50 mg/L (Dow 2014). Little research into sub-lethal effects for aquatic 

invertebrates has been conducted since its approval for use by the EPA, which concluded 

that sulfoxaflor would have little effect on aquatic species (EPA 2019). 
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TEST ORGANISMS 

Daphnia magna has been selected due to its role as an EPA-recommended model 

organism. They are ideal for toxicity testing including reproductive endpoints due to their 

cyclical parthenogenesis, which establishes that most offspring produced by females are 

genetically identical (EPA 2002). In the presence of stressors such as high density or low 

food, D. magna produce resting eggs known as ephippia, which serve as a clear marker of 

reproductive stress (EPA 2002). Additionally, the production of male offspring and 

opportunity for sexual reproduction (which is required for ephippia) occurs as a response 

to extreme conditions, offering an additional insight into how toxicants can induce 

reproductive stress on daphnids (EPA 2002). D. magna possess four unique life stages: 

egg, juvenile, adolescence, and adult, with broods consisting of 6-10 eggs (EPA 2002). The 

species is also ideal for assays analyzing heart rate and metabolic processes due to their 

transparency, making analysis noninvasive and simple (Colmorgen and Paul 1995). Ease 

of culture, sensitivity to various pollutants, and ease of commercial access make Daphnia 

magna an ideal model organism for toxicity testing (EPA 2002), particularly regarding 

sulfoxaflor, which is intended to have a higher specificity for invertebrates (Dow 2014). 

In-depth knowledge of the species in terms of genetics, reproductive systems, and 

responses to stressors (EPA 2002) allows for strong points of comparison for behavioral 

and reproductive alterations caused by environmental toxins. 

SUBLETHAL ENDPOINTS 

Given the mode of action of sulfoxaflor, key endpoints useful in analyzing the sublethal 

impacts of sulfoxaflor include mobility parameters, heart rate, and organism growth. 

Mobility analyses help determine whether the mode of action of sulfoxaflor is shared 
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between pest organisms and non-target aquatic invertebrates, and whether run-off from 

fields at environmentally relevant concentrations is of concern for the health of non-target 

species. A study conducted on the blue-tailed damselfly (I. elegans) in 2019 discovered 

that thiacloprid levels above 1.0 ug/L led to a decrease in mobility and swimming activity 

of nymphs (Barmentlo et al. 2019). Heart rate analyses give valuable insight into the 

physiological impacts of exposure and how survival may be adversely affected in the wild, 

such as paralysis leading to higher rates of predation. The pesticide Lamba-cyhalothrin has 

been shown to decrease heart contraction frequency in Daphnia magna above 5 ug/L 

(Bownik et al. 2019). Both apical spine length and body size have been shown to increase 

as a morphological response to predator presence in Daphnia magna, with apical spine 

length being the most prominent defense for juvenile D. magna (Rabus et al. 2013). The 

apical spine length, body size, and the ratio of these two parameters were used to determine 

investment in growth, and to determine if chemical exposure induced stress similar to 

predatory pressure. Investment in body size and apical spine length may detract from 

investment in other primary functions such as reproduction, negatively impacting the 

overall fitness of the species as a result of exposure. 

This study aims to identify the presence and degradation of sulfoxaflor in water using 

HPLC as well as the potential sublethal effects of sulfoxaflor on Daphnia magna by 

analyzing various endpoints including mobility, heart rate, and growth. 
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CHAPTER 2 – MATERIALS AND METHODS 

ANIMAL CULTURE 

Adult Daphnia magna were purchased from the Carolina Biological Supply Company 

and maintained in the Jepson Science Center at the University of Mary Washington. 

Cultures were kept at a pH between 6 - 8.5 and an optimal temperature range between 20 

± 2°C (EPA 2016). Dissolved oxygen levels were maintained at > 3 mg/L and a consistent 

photoperiod of 16 hours light: 8 hours dark (EPA 2016). Cultures were fed a diet of 

lyophilized spirulina algae meeting dietary needs of 0.2 mg of carbon a day per daphnid 

(EPA 2016) with feedings taking place once every two days. Cultures were maintained in 

synthetic water, a mixture of deionized water and necessary ions (See Table 2.1). Adult 

Daphnia with visible eggs were separated out from the main population in a one-liter 

beaker, and juveniles born within 24 hours from the separated population were then used 

for experiments. 

 

 

 

 

 

 

 



 

7 

 

Chemical Formula Concentration (g/L) 

NaHCO3 0.192 

CaSO4 ∙ 2H2O 0.120 

MgSO4 0.120 

KCl 0.008 

Table 2.1: Synthetic water composition; concentration of necessary ions added to deionized 

water for use in animal culture and exposure studies. 
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CHEMICAL CONCENTRATIONS 

Due to the recent nature of its development, there is no information regarding the 

environmental concentration of sulfoxaflor. As such, experimental concentrations are 

based upon the environmental concentrations of the previous class of pesticides, 

neonicotinoids. Various neonicotinoid chemicals have been detected in water bodies 

ranging in concentration from 0.001 to 225 µg/L, though data from a combination of 

studies reported a geometric mean of 0.13 µg/L as an average concentration in surface 

water (Morrissey et al. 2015). Based on these values, treatment concentrations were 

selected to be 0, 0.1, 0.5, 1, 5, and 10 µg/L. Lyophilized sulfoxaflor powder (CAS:946578-

00-3) was purchased from LGC Standards in 10 mg quantities and dissolved in 10 mL of 

100% ethanol vehicle (CAS 64-17-5), creating a 1,000,000 µg/L stock concentration. 

Serial dilutions were performed with ethanol to create subsequent superstocks for 

concentrations of 500,000 µg/L, 100,000 µg/L, 50,000 µg/L, and 10,000 µg/L. Treatment 

concentrations were then created using a 1:100,000 dilution from each superstock with 

water to control for total amount of ethanol in each treatment. A 10mL ethanol control was 

also prepared for the 0 µg/ treatment. All chemical was stored in 60 mL amber bottles and 

wrapped with parafilm, and stored away from light exposure in a freezer at -4°C. All 

exposures had 0.0001% ethanol in the final stock solutions. 

CHEMICAL DEGRADATION TESTING 

Given the relatively recent development of sulfoxaflor, few studies have been 

performed examining its degradation in water, emphasizing the importance of being able 

to compare nominal versus actual concentrations used over the course of the study. Thus, 

the first assay in the study was based on determining the degradation of sulfoxaflor in 
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synthetic water used for exposures to determine appropriate timing for exposure solution 

replacement in chronic studies. Diluted concentrations used for animal exposures were too 

low for detection using HPLC. As such, HPLC was conducted on intermediate solutions to 

assess the accuracy of the treatment concentrations over the course of each study. Samples 

were run on an Agilent 1100 Series HPLC System with Diode Array Detector. The UV 

wavelength used was 210 nm, previously determined using UV spectroscopy with the 

express purpose of use in HPLC. The samples were run through a C18 column with a 

mobile phase composition of 30/70% H2O/MeOH. Concentrations of 0, 50, 100, 500, 1000, 

and 1500 µg/L were analyzed over four samples of two injections each in order to 

determine a standard curve for the chemical in synthetic water. The standard curve was 

then used to determine retention time of 1000 µg/L of the chemical in synthetic water after 

0, 24, and 48 hours and in a 1000 µg/L solution created from ethanol superstocks stored 

for 3 months, 6 months, and 12 months in order to ensure accuracy of treatment 

concentrations during exposure trials. 

ASSAY SETUP 

Assays included two different exposure trials drawn from same stock of juveniles: an 

acute 48-hour trial and a chronic 7-day trial. All 48-hour exposures were prepared in 50 

mL beakers with 20 mL of a given test solution. Juvenile Daphnia magna under 24 hours 

of age were collected from culture and distributed between the test groups, with one 

individual per beaker. Test containers were covered in tinfoil with holes for air exchange 

and kept in ambient air temperatures within ideal range over the course of the study. All 7-

day exposures followed the same procedure, with the addition of static replacement of 

treatment solution every 48 hours, determined to be appropriate as a result of the HPLC 
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degradation assay. During each static replacement, feeding was conducted using newly 

prepared test solution including spirulina powder equivalent to 0.4 grams of carbon (2x 

daily amount) (EPA 2016). Mortality was assessed daily and heart rate, mobility, and 

growth assays were conducted at 48 hours and 7 days, respectively. Tested individuals 

were used for all assays in the following order: mortality, mobility, heart rate, growth. 

RANGEFINDER ASSAY 

At 48 hours, test groups were checked for mortality. Signs of paralysis or death were 

determined by use of a well slide and compound microscope. As paralysis is a potential 

response to exposure, all immobile specimens were checked for viability defined as the 

observation of a heartbeat and eye movement. Paralyzed individuals were considered alive 

and included in analyses. Data was analyzed based on total mortality observed at each 

concentration, with the intent to define or specify the no observed effect concentration 

(NOEC), the lowest observed effect concentration (LOEC), the lethal concentration where 

20% of individuals exhibit mortality (LC20), or lethal concentration where 50% of 

individuals exhibit mortality (LC50), as well as to determine whether the chosen 

concentrations were appropriate for use with subsequent assays. 

MOBILITY ASSAY 

Individuals were placed in a 50 mL beaker with 5 mL of synthetic water, then placed 

within an environment with a consistent light source. A 3-minute acclimation period was 

utilized to minimize disruptive effects from handling. A Logitech HD Pro Webcam C920 

camera was utilized to take a top-down video of the beaker using the LogiTech Capture 

(v1.01.19) program from a connected computer. After taking a 3-minute recording, the 



 

11 

 

program ToxTrac (v2.84) was used to analyze the video and calculate data regarding 

mobility parameters over the first minute for each individual daphnid (See Table 2.2). 

Tracking output was used to conduct quantitative analysis (See Figure 2.1). 
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Mobility Parameters Description Units 

Average speed Average speed of individual during recording mm/s 

Average mobile speed Average speed of individual only when in motion mm/s 

Average acceleration Average acceleration of individual from standstill mm/s2 

Total distance Total distance traveled by individual during 

recording 

mm 

Total frozen events Total number of times spent immobile longer than 

0.5 seconds 

# total 

instances 

Table 2.2: List and description of mobility parameters identified by ToxTrac program. 
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Figure 2.1: Graphical output of ToxTrac program; green line indicates tracked path of 

single Daphnia magna over the course of a 3-minute recording. 
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HEART RATE ASSAY 

Individuals heart rates were assessed using a compound microscope, digital 

microscope camera, and 3 mm well slides. An OMAX 3.0 USB microscope camera was 

attached to the compound microscope and a computer with the ToupView (x64, v4.7) 

program used to obtain video footage. A digital lux meter was used to adjust the compound 

microscope light intensity to 200 lux. All other light sources were removed during heart 

rate analyses to prevent environmental bias. An individual daphnid was placed on the well 

slide and immobilized using wet cotton fiber. A 5-minute acclimation time was utilized to 

limit impact of stress from handling and a 1-minute recording of cardiac function obtained 

using ToupView (See Figure 2.2). Heart rates recordings were analyzed by reducing the 

speed of the video to ¼ speed using Windows Movie Maker 2012 and counting individual 

beats to determine heart rate in beats per minute. 
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Figure 2.2: Microscope imaging of Daphnia magna heart visibility, indicated by arrow, 

using an OMAX 3.0 USB microscope camera and ToupView (x64, v4.7) program. 
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GROWTH ASSAY 

Individuals were placed on a micrometer slide beneath a dissecting microscope. An 

OMAX 3.0 USB camera and ToupView (x64, v4.7) program were utilized to take a clear 

picture of the individual with the full length of the micrometer unobstructed. The program 

Fiji ImageJ (v1.8.0) was used to measure the length of the body and apical spine separately 

of each individual, with micrometer used to define pixel counts within the ImageJ program 

for accuracy of calculated lengths.  
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CHAPTER 3 - RESULTS 

CHEMICAL DEGRADATION 

A standard curve for sulfoxaflor concentration in synthetic water was successfully 

derived using the average value across injections, with an R2 value of 0.998 (See Figure 

3.1). The standard curve was then used to determine the actual concentrations of the various 

stock and treatment solutions. The actual concentration of the 1000 ug/L nominal solution 

created from superstock stored for 12 months ranged between 159-322 µg/L, up to an 84% 

decrease from the expected concentration. The actual concentration of the 1000 µg/L 

nominal solutions created from superstocks stored for 3 and 6 months ranged between 945-

993 µg/L and 934-993 µg/L, respectively. Degradation in synthetic water was analyzed to 

determine appropriate timing for static replacement exposures. Initial concentrations 

ranged between 957-980 µg/L, with concentrations at 24 and 48 hours ranging between 

1021-2092 µg/L and 1049-1090 µg/L, respectively. 
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Figure 3.1: HPLC Standard Curve of sulfoxaflor at 210 nm between 0 and 1500 µg/L; 

y=0.0815x –1.1197, R2=0.998. 
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Figure 3.2: Actual concentration ± SEM through HPLC analysis of 1000 ug/L solutions 

created in synthetic water from stocks that had been in storage for 3, 6, and 12 months post-

creation. 
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Figure 3.3: Actual concentration ± SEM through HPLC analysis of 1000 ug/L solutions 

created in synthetic water after 0, 24, and 48 hours of creation; error bars are SEM.  
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RANGEFINDER ASSAY 

Mortality was assessed at 48 hours for 48-hour trials and 7 days trials. While no 

consistent trend in mortality was observed at 48-hours, there was a trend in mortality 

observed at 7 days (See Table 3.1). An LC50 (lethal concentration where 50% of individuals 

experience mortality) plot analyzed using probit analysis returned an LC50 value of 5.85 

µg/L (See Figure 3.4). 
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 Mortality 

Concentration (µg/L) 48 Hours (% / # individuals) 7 Days (% / # individuals) 

0 0 / 0 25 / 1 

0.1 25 / 2 25 / 1 

0.5 0 / 0 25 / 1 

1 12 / 1 50 / 2 

5 0 / 0 50 / 2 

10 12 / 1 75 / 3 

Table 3.1: Mortality of juvenile Daphnia magna after exposure to various concentrations 

of sulfoxaflor at 48-hours (n=8) and 7 days (n=4); percentage of total sample size 

experiencing mortality at each respective time point. 
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Figure 3.4: LC50 plot through probit analysis of D. magna mortality to increasing 

concentrations of sulfoxaflor; y = 4.6473x + 28.809 and R2=0.8328. 
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MOBILITY ASSAY 

Mobility was assessed after 7 days, with trends indicating decreased speed, mobility, 

and acceleration at higher concentration levels (See Figure 3.5). Observed trends in 

increased number of frozen events were observed at 1 and 5 µg/L. Results had low 

statistical significance due to low samples sizes of treatments at the 1, 5, and 10 µg/L 

treatments (n=2, 2, and 1 respectively). Due to time constraints induced by global 

pandemic, analyses on mobility were not able to be completed on 48-hour exposures at the 

time of thesis finalization. 

 

 

 

 

 

 

 

 

 

 



 

25 

 

 

Figure 3.5: Effects of various concentrations of sulfoxaflor exposure to juvenile D. magna 

after 7 days on different mobility parameters, including: average speed ± SEM (A), average 

mobile speed ± SEM (B), average acceleration ± SEM (C), total distance traveled ± SEM 

(D), and total number of frozen events ± SEM (E) over the course of a 3 minute exposure 

period (n=3,3,3,2,2,1). 
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HEART RATE ASSAY 

Analysis at 48 hours did not indicate any clear trend in impact on heart rate in juvenile 

D. magna, however, potential differences at higher concentrations of the chemical during 

7-day exposures were observed (See Figure 3.6). Low sample sizes at 1, 5, and 10 µg/L 

(n=2, 2, and 1 respectively) led to incomplete statistical analyses of heart rate data for 7-

day exposures. 
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Figure 3.6: Average heart rate in beats per minute (BPM) ± SEM of juvenile Daphnia 

magna after 48 hours (A) and 7 days (B) of exposure to concentrations of sulfoxaflor. 
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GROWTH ASSAY 

Juvenile D. magna growth did not differ between treatments at 48 hours (See Figure 

3.7), however, apical spine length and body length: apical spine length ratio appeared to 

show an increase in higher treatments after 7 days of exposure (See Figure 3.8). 
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Figure 3.7: Average growth values ± SEM of body length (A), apical spine length (B), and 

the ratio of these apical spine length to body length (C) in juvenile D. magna after 48 hours 

of exposure to various concentrations of sulfoxaflor.  
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Figure 3.8: Average growth values ± SEM of body length (A), apical spine length (B), and 

the ratio of these apical spine length to body length (C) in juvenile D. magna after 7 days 

of exposure to various concentrations of sulfoxaflor. 
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CHAPTER 4 - DISCUSSION 

CHEMICAL DEGRADATION 

Analysis of chemical degradation in ethanol superstocks allows insight into persistence 

of the sulfoxaflor under storage conditions and supports the conclusion that the expected 

concentrations of the superstocks that had been in storage for less than 6 months were 

accurate (See Figure 3.2). Additionally, analysis on degradation under exposure conditions 

indicates that sulfoxaflor does not degrade under test conditions over a 48-hour period, 

with slight increases in concentration attributable to evaporation, indicating a 48-hour 

solution replacement was appropriate for chronic studies (See Figure 3.3). A recent 

publication successfully isolated the bacterial strain Aminobacter sp. CGMCC 1.17253 and 

determined the half-life of sulfoxaflor exposed to these bacteria in soil was 6.97 days (Yang 

et al. 2020). The same study also found that in the absence of Aminobacter sp. CGMCC 

1.17253, the chemical had a half-life of 27.68 days in soil (Yang et al. 2020). Values 

provided by Dow Agrosciences indicated average half-lives of 4 days in soil, 11-64 days 

in water, and 37-88 days in sediment/water conditions (Dow 2014). The comparison of 

these studies indicates that the presence of bacteria in both soil and water is key for 

chemical degradation in the environment, and that degradation of the chemical is slowed 

in water compared to soil systems. This has important implications for lab exposures 

attempting to investigate the environmental effects of the chemical. Sulfoxaflor may have 

varied half-lives depending on the presence of sulfoxaflor-degrading bacteria in local 

environments, altering the potential toxicity of the chemical and potential for interaction 

with non-target organisms within application range.  
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Sulfoxaflor is shown to degrade into various metabolite compounds in animal, plant, 

and soil systems. There are eight different metabolites that result from metabolic 

breakdown of sulfoxaflor, primary among these being X11719474 (CAS 1186104-89-1) 

which is predicted to be the metabolite most present in soil and aquatic environments with 

a field-based half-life of around 76 days (Terry et al. 2015). Metabolite X11719474 was 

found to be significantly less toxic than the parent compound, either producing no effect 

or only incurring an effect at a higher dose than sulfoxaflor in rats, mice, and dogs (Terry 

et al. 2015). Relative toxicity was maintained through impacts on the liver, but metabolite 

X11719474 did not exhibit similar impacts on neonatal survival and development in rats 

as the parent compound (Terry et al. 2015). Other soil-based metabolites include 

X11579457 and X11519540. While X11579457 has been found to be nontoxic during rat 

in vitro studies, metabolite X11519540 was found to be more toxic than the parent 

compound, ranging between 3.3-16 and 10-15.1 times more toxic to male and female rats, 

respectively, than sulfoxaflor in short term exposures (Terry et al. 2015). The data 

presented by Terry et al. indicate that metabolic breakdown of sulfoxaflor has the potential 

to either increase or decrease toxicity of the parent compound, depending on which 

metabolite is generated in soil and water. Presence of these metabolites under different 

conditions will alter the potential toxicity and risk presented by sulfoxaflor application to 

various environments, indicating that further research into the existence of these 

metabolites in the field are necessary to understand the impact of the chemical on natural 

environments. While current testing shows that only the less-toxic metabolite X11719474 

is present in water sediment systems (Terry et al. 2015), more testing is necessary to 
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determine environmental presence of the sulfoxaflor and subsequent metabolites in various 

waterways and environmental conditions. 

As of now, little research into the environmental presence of sulfoxaflor has been 

conducted in locations where the chemical is in use. Application of sulfoxaflor, based on 

the guidelines for use of the market product Transform®, typically does not exceed 2-4 

applications per crop (Dow 2016). Based on this information as well as the chemical half-

life, it is unlikely that repeat use of sulfoxaflor will lead to accumulation of the chemical 

in soil environments but may lead to accumulation in waterways. Additionally, persistence 

of metabolites in both soil and water systems may lead to potential increases in 

concentrations over time. These data collectively indicate the need for further investigation 

into environmental presence of the chemical and changes in concentrations of both parent 

material and metabolites throughout agricultural application. 

RANGEFINDER ASSAY 

Concentrations used in this study reflect the expected environmental range of D. 

magna concentrations of sulfoxaflor in the environment. No significant mortality to 

sulfoxaflor was observed at 48 hours between concentration levels (See Table 3.1), 

indicating that acute exposure to the chemical is unlikely to influence survival of juvenile 

D. magna. Given a half-life of 11-64 days in water, however, acute 48-hour analyses do 

not accurately reflect expected mortality in affected environments. Though not statically 

significant, preliminary analysis at 7 days suggests an increase in mortality occurring at 1 

µg/L with 50% mortality, increasing to 75% mortality at 10 µg/L with a LC50 of 5.85 µg/L 

(See Figure 3.4). These data show a considerable increase in mortality with prolonged 

exposure to the pesticide, indicating that introduction into an aquatic environment may 
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have significant impacts on D. magna survival, though further analysis may better elucidate 

these correlations. Previous analyses on various neonicotinoid pesticides report EC50 

values of 16.5 mg/L for imidacloprid, 14.7 mg/L for cycloxaprid, and 13.0 mg/L for 

guadipyr for juvenile D. magna after 48 hours of exposure (Qi et al. 2018).  Data reported 

by Dow Agrosciences demonstrate a 48-hour EC50 (concentration where 50% of 

individuals exhibit an effect) greater than 399 mg/L, and a 21-day NOEC of 50 mg/L (Dow 

2014), falling significantly higher than reported findings for neonicotinoid pesticides. 

Furthermore, this study indicates potential effects at concentrations as low as 1 µg/L after 

7 days, warranting further analysis into whether sulfoxaflor is less toxic to juvenile D. 

magna than neonicotinoids. Additionally, the studies conducted by Dow fail to identify 

whether juvenile or adult individuals are used in exposures, raising questions as to how the 

chemical might impact the species at different time points in their life cycle. D. magna 

have been shown to respond differently to exposure to the pesticide pyriproxyfen as 

juveniles and mature adults (Ginjupalli and Baldwin 2013). While the pyriproxyfen 

exposure led to increased output of male offspring by mature D. magna, it had a much 

stronger impact on juveniles, leading to slower recovery from chemical exposure and 

delayed reproductive maturity (Ginjupalli and Baldwin 2013). This lends support for the 

idea that analysis of D. magna at a single time point in toxicity studies may not provide 

enough insight into the effects of a chemical on wild populations, and that further 

investigation into the effects of sulfoxaflor at different ages of D. magna are needed to 

fully comprehend its impacts in aquatic environments. 

Given expected environmental conditions, 48-hour exposures do not accurately 

portray potential mortality based on the persistence of sulfoxaflor in aquatic environments. 
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Longer-term analyses, including 7-day exposures, are more indicative of environmental 

conditions based on sulfoxaflor half-life (11-64 days) under aquatic conditions. While wild 

D. magna populations would be expected to decline, the species serves as key organisms 

in freshwater ecosystem interactions (Miner et al. 2012) whose presence as a primary 

consumer impacts many of the other species around them. Loss of D. magna populations 

could lead to decreased consumption of phytoplankton, leading to the potential for 

overgrowth of the phytoplankton and potential eutrophication of affected waterways. 

Additionally, loss of the species could result in decreased food availability for higher 

trophic level predators, including planktivorous fish and predatory invertebrates (Miner et 

al. 2012), whereby bottom-up control would lead to an overall decrease in these 

populations in response. The key trophic position of D. magna makes mortality data 

particularly important for analysis of the effects of sulfoxaflor on aquatic environments 

and indicates that wildlife populations unaffected by the pesticide itself may still be 

impacted by chemical introduction into the environment through eutrophication and/or 

decreased food availability. 

MOBILITY ASSAY 

Mobility as a behavioral endpoint has been used consistently when examining the 

impacts of toxicants on D. magna (Bownik 2017). Various programs and systems have 

been used for analysis, including BehavioQuant and DaphTox ® (Bownik 2017), but these 

systems are often expensive and not readily accessible. The mobility data in this study was 

analyzed using ToxTrac (v. 2.90), an open-source and freely available program that 

specifically tracks organisms and reports quantitative data for toxicological purposes (See 

Figure 2.1). Studies have shown that ToxTrac and related software can be used to collect 
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comprehensive mobility data on other aquatic invertebrate species such as Planorbella 

duryi (Frankel et al. 2020). This study found that at higher concentrations of sulfoxaflor, 

juvenile D. magna exhibited decreased speed, acceleration, and total travel distance after 

7 days of exposure (See Figure 3.5). Additionally, increases in the number of frozen events 

were identified at 1 and 5 µg/L. While sample sizes at 1, 5, and 10 µg/L were small (n= 2, 

2, and 1 respectively), these data present a potential trend in decreased mobility after 

prolonged exposure to sulfoxaflor, suggesting that the chemical may impair juvenile D. 

magna mobility under expected environmental conditions. Reduced mobility can have 

ecological consequences for wild populations, as inhibition of swimming behaviors can 

lead to higher rates of predation due to a decreased ability to escape (Bownik et al. 2019). 

Higher rates of predation could subsequently lead to decreased population numbers in the 

environment, increasing the likelihood of eutrophication or decreasing food availability for 

secondary consumers that utilize D. magna as a food source (Miner et al. 2012).  

HEART RATE ASSAY 

Sulfoxaflor acts as an insect nicotinic acetylcholine receptor (nAChR) agonist, 

leading to excitatory responses in the central nervous system (CNS) of arthropods (Sparks 

et al. 2013). This activation typically leads to tremors, leg extension and curling, partial or 

complete paralysis, and death in affected insects (Sparks at al. 2013). Many studies have 

been conducted analyzing the impacts of various chemicals on the heart rate of D. magna. 

This study aimed to determine if sulfoxaflor interacted with non-target invertebrate nAChR 

receptors in the same manner, and whether agonistic impacts affected heart rate in D. 

magna. After 48 hours, no clear correlation between heart rate and chemical exposure can 

be determined (See Figure 3.6). Acute exposures do not seem to induce any effect on heart 
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rate in exposed juveniles. While a slight decrease in heart rate is observed after 7 days of 

exposure at higher treatment levels (See Figure 3.6), larger sample sizes are necessary to 

delineate the magnitude of this effect. Impacts on heart rate can lead to decreased mobility 

in the water column as well as paralysis. Based on the data presented in this study, 

sulfoxaflor does not appear to cause any effect to juvenile D. magna heartrate at expected 

environmental concentrations, though further analysis into chronic exposures based on 

chemical half-life are necessary to determine the impacts of the chemical under 

environmental conditions.  

Alterations in heart rate can lead to impacts on ability of the heart to transport 

oxygen through the body, leading to a reduction of oxygen delivered to vital organs and 

potential for increased susceptibility to disease (Bownik et al. 2019). Decreased ability to 

maintain cellular homeostasis and increased energy consumption are also potential 

detrimental impacts of impaired circulatory function (Lari et al. 2017). Alterations in heart 

rate can be compensated by D. magna through the use of thoracic limb movement, which 

can often support the heart in supplying oxygen to the body (Lari et al. 2017), indicating 

that even under conditions that impair heart function, overall survival may not be 

significantly altered. It is important to connect this with impacts on mobility, however, as 

contaminants such as sulfoxaflor that target the central nervous system in control of 

muscular contractions may subsequently limit movement of the thoracic limbs. Future 

studies into impacts of sulfoxaflor on D. magna might focus on thoracic limb movement 

to identify whether impaired heart rate carries significant complications for survival in 

natural environments. 
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GROWTH 

Daphnia magna have been demonstrated to morphologically change in response to 

increased predatory pressures, including lengthening of the body and apical spine (Rabus 

et al. 2013). Additionally, D. magna have been shown under toxicant-induced stress to 

increase energy consumption and decrease energy uptake, leaving less energy to allocate 

to other important parameters such as growth and reproduction (Villarroel et al. 2009). 

Decreased growth can often have direct impacts on survival of individuals, while decreased 

reproductive output can lead to a decline in overall population levels in the environment 

(Villarroel et al. 2009). Both investment in growth or lower energy allocation for growth 

as result of exposure can have significant impacts on individual survival in the 

environment. The data from this study indicate that there is no obvious effect on growth of 

juvenile D. magna between treatment levels after 48 hours (See Figure 3.7), however, an 

increase in apical spine length at higher treatments was identified after 7 days (See Figure 

3.8). Heightened stress induced by chemical exposure may encourage growth as a 

morphological response, with chemical stress inducing defensive allocations rather than 

heightened energy consumption. Investment in growth can reduce rates of predation in the 

wild (Rabus et al. 2013), but in environments where predation rates are low, this energy 

allocation or increased energy consumption caused by stress can come at the cost of 

reproduction during the exposure period. Many D. magna populations in northern 

geographic ranges experience population declines during the winter, and reproductive 

investment in sexual reproduction and development of ephippia is vital for population 

regeneration in the spring (EPA 2002). If sulfoxaflor is sprayed on fall crops during this 

crucial period, and sufficient environmental contamination takes place, the decrease in 
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reproductive investment could significantly harm the ability of D. magna populations to 

recover in the spring. The EPA does currently allow usage of the pesticide on various fall 

crops, including different types of grains and cucurbits (EPA 2012). Impacts on growth 

and ability to invest in reproduction surrounding application sites could reduce overall 

populations in surrounding agricultural areas. D. magna are vital to freshwater ecosystems, 

as consumers of phytoplankton and as a food source for secondary consumers such as 

planktivorous fish and predatory invertebrates (Miner et al. 2012). Declines in D. magna 

populations could lead to overgrowth of phytoplankton and drastic decline in food 

availability for secondary consumers, leading to instability within the trophic web and 

potential declines in higher trophic level populations. 
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CHAPTER 5 – FUTURE STUDIES 

AGE-BASED ANALYSIS 

 Differences in the impacts of pesticides on D. magna based on the age of 

individuals has been demonstrated in previous studies (Ginjupalli and Baldwin 2013). Due 

to the limited availability of studies analyzing the effects of sulfoxaflor exposure on D. 

magna, as well as uncertainty centered around current data provided by Dow Agrosciences, 

future studies should prioritize differentiating the potential changes in response to 

sulfoxaflor exposure at different ages in order to identify potential windows of sensitivity. 

Acute and chronic exposures are both necessary to capture impacts of the chemical in the 

environment based on environmental degradation times. 

REPRODUCTIVE ASSAYS 

 Presently, no studies have been conducted analyzing toxicological impacts of 

sulfoxaflor on D. magna reproduction; however, current studies demonstrate that D. magna 

exhibit stress responses to chemical exposure. A prominent stress response of the species 

includes high rates of energy consumption that may lead to decreased or limited investment 

in reproduction (Villarroel et al. 2009). Due to this, exposure studies determining the 

potential for delayed or altered reproduction is an important avenue of investigation into 

the impacts of sulfoxaflor on wild D. magna populations. This additionally pairs with age-

based investigations, as pesticides have been shown to impact the reproductive output of 

juvenile and adult D. magna differently (Ginjupalli and Baldwin 2013). 
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METABOLITE EXPOSURES TO AQUATIC INVERTEBRATES 

 While metabolite exposures have been conducted on various mammalian species 

including rats, mice, and dogs (Terry et al. 2015) to help elucidate the potential effects on 

humans, no research has been conducted on the potential toxicological impact of 

sulfoxaflor metabolites on aquatic invertebrates including D. magna. Given current 

evidence that suggest metabolites tend to persist longer in the environment than the parent 

chemical and may induce toxic effects (Terry et al. 2015), analysis of relevant metabolite 

interaction with non-target aquatic invertebrates is of vital importance for determining 

environmental toxicity of the chemical. 

ENVIRONMENTAL PRESENCE 

 Due to sulfoxaflor’s recent development, very few studies have looked at 

degradation of the chemical under various environmental conditions, and no studies have 

quantified the environmental presence of the chemical, nor analyzed its potential 

accumulation at different time points in the agricultural season. As such, understanding of 

the chemical’s environmental relevance, as well as persistence and toxicological 

interactions of metabolites, are necessary to develop a basis for ecotoxicological studies 

attempting to analyze impacts on non-target species at environmentally relevant 

concentrations. Furthermore, studies investigating presence in natural environments may 

help direct future policy surrounding agricultural use, as potential accumulation of the 

chemical and metabolites following agricultural guidelines are currently not well 

understood. 
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CHAPTER 6 – FINAL CONCLUSIONS 

 The main objective of this study was to analyze the potential behavioral and 

physiological sublethal impacts of sulfoxaflor on juvenile Daphnia magna at 

environmentally relevant concentrations. Based on these findings, sulfoxaflor has been 

shown at environmentally relevant concentrations to produce sub-lethal impacts on 

juvenile D. magna after 7 days of exposure. Though much of the current 7-day data is not 

statistically significant due to low sample sizes, preliminary analysis presents trends not 

visible in 48-hour exposures, which exhibited no observable impact on juvenile D. magna. 

Analysis of longer exposure periods is supported by the broad estimated half-life of 

sulfoxaflor falling between 11-64 days in water sediment systems. HPLC analysis indicates 

that sulfoxaflor does not readily degrade in water under laboratory conditions, supporting 

findings that suggest sulfoxaflor has an increased half-life in water as opposed to soil 

systems.  

Increased mortality was observed at higher concentrations, though 50% mortality 

was observed at concentrations as low as 1 µg/L, contradicting current data presented by 

Dow Agrosciences that states a NOEC of 50 mg/L after 21 days. This contradiction 

emphasizes a need for further analysis into the impacts of sulfoxaflor on non-target aquatic 

invertebrates, as well as identifying potential windows of sensitivity between juvenile and 

mature D. magna. Additionally, higher concentrations of sulfoxaflor identified trends of 

increased length of apical spine and decreased heart rate and mobility parameters such as 

average speed, acceleration, and total distance after 7 days of exposure. While current data 

on sulfoxaflor and D. magna discuss mortality only, many of these parameters have direct 

implications for D. magna survival in the wild, emphasizing the importance of analysis 
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into sublethal endpoints of chemical exposure. Increased energy consumption, decreased 

oxygen flow to the body, reduced or delayed reproduction, and higher predation rates due 

to decreased mobility are all potential impacts to D. magna that are not addressed or 

investigated in standard rangefinder assays. Mortality data can be useful in identifying 

major concerns with chemical or pesticide use, but clearly do not offer a full picture of 

impacts on environmental systems or non-target species. For species such as D. magna, 

whose presence in freshwater environments is key for both control of phytoplankton 

populations and as a food source of secondary level consumers, drastic changes in 

population numbers as a result of toxicant exposure can have significant impacts on overall 

ecosystem health. As such, it is important that future toxicological research include 

analyses that investigate the various sublethal behavioral and physiological endpoints for 

all investigated species that, if negatively impacted, may have severe survival implications 

in the wild. 

Lastly, it is apparent that sulfoxaflor’s interactions in the environment are not 

currently well understood. Toxicological impacts of the chemical have not been thoroughly 

investigated in any non-target species beyond rats and mice, and even fewer studies have 

been conducted on aquatic species. No studies on environmental presence of sulfoxaflor or 

its metabolites have been conducted at this time, and research into the toxicity of its 

metabolites is sparse. It is evident that much more research into the environmental presence 

and interactions of sulfoxaflor is needed before its toxicological impacts can be understood 

well enough to protect non-target organisms and natural ecosystems surrounding its 

agricultural use. 
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