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Abstract

In this research project, I investigated deterministic and stochastic versions of the T , T ∗, VI ,
VNI model for Human Immunodeficiency Virus Type 1 (HIV-1) dynamics. First, an analytical
solution to a simplified version of the deterministic model is found. Then, numerical techniques
are used to obtain an approximate solution to the deterministic model. Finally, a stochastic
version of the model is discussed, and numerical methods are used to find an approximate
solution to the stochastic system. These results demonstrate the behavior of HIV-1 in an
infected patient under the effects of reverse transcriptase and protease inhibitors, and illustrate
how the addition of randomness to the constants in the model impact the development of HIV-1
in a given patient.

1 Model for HIV-1 Dynamics

The major target of HIV infection is a class of lymphocytes known as CD4+ T-cells. Once in-
fected, these cells produce new HIV virus particles. These virus particles are infectious, but they
can be made noninfectious by the actions of protease inhibitors. The model examined in this
project is one that has been a basis for many studies of HIV-1 Dynamics [3] and considers four
populations: uninfected CD4+ T-cells that are susceptible to infection (denoted T ), productively
infected CD4+ T-cells (denoted T ∗), infectious virus particles (denoted VI), and noninfectious virus
particles (denoted VNI).

The following equations represent the rates of change of these populations under the effects of
reverse transcriptase and protease inhibitors:

dT

dt
= λ− dT − (1− κ)kVIT (1)

dT ∗

dt
= (1− κ)kVIT − δT ∗ (2)

dVI
dt

= (1− η)NT δT
∗ − cVI (3)

dVNI
dt

= ηNT δT
∗ − cVNI (4)

Each of the constants in this model (λ, d, k, δ, NT , c, κ, and η) are positive values. The following
table contains the values used for the parameters of this model obtained from [11] along with the
units of each constant and its interpretation in the model.

Parameter Value Units Interpretation

λ 0.1089 cells per day Healthy T-cell birth rate.

d 0.01089 1 / day Healthy T-cell death rate.

k 1.179× 10−3 1 / (virions · day) Infection rate of susceptible T-cells.

δ 0.366 1 / day Infected T-cell death rate.

NT 4246.4 virions / cell Virus production rate.

c 3.074 1 / day Viral clearance rate.

Table 1: Values of model parameters and interpretations.

Note that the parameters κ and η in our model are not included in the table above. The
parameters κ and η represent the efficacy of reverse transcriptase inhibitors and protease inhibitors,
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respectively. Reverse transcriptase (RT) inhibitors are a treatment method which prevent HIV RNA
from being converted to DNA. As a result, the infectiousness of the virus is reduced by (1 − κ),
where 0 ≤ κ ≤ 1 [3]. Protease inhibitors, on the other hand, do not have a direct impact on the
infectiousness of the virus. Rather, they cause the production of noninfectious virus particles. The
value η is then defined to be the fraction of the total virus produced that is noninfectious [3], with
(1 − η) being the fraction of the total virus produced that is infectious. Therefore, production of
infectious virus is multiplied by the constant (1 − η), while production of noninfectious virus is
multiplied by η, where 0 ≤ η ≤ 1.

Appropriate values for κ and η are addressed in Chapter 3 within the discussion of patient
data. From the patient data, it seems that the most appropriate estimates for κ and η are 0.6, and
therefore κ = 0.6 and η = 0.6 are used in solving the deterministic model in Chapter 2.

1.1 Existence and Uniqueness

To show that a unique solution to our initial value problem exists, we make use of the Picard-
Lindelöf Theorem. A proof of this theorem can be found in [5].

Theorem 1. (Picard Lindelöf Theorem) Consider the ordinary differential equation

dx

dt
= f(x),x ∈ Rm,

with initial condition x(t0) = x0. Let U = B̄(x0, b) and J = [t0 − a, t0 + a], where f : U → Rm
is Lipschitz with Lipschitz constant K, and |f(x)| ≤ M for all x ∈ U . Then the initial value
problem has a unique solution x ∈ C0(J, U) as long as the time interval is chosen with a satisfying

0 < a < min

{
1

K
,
b

M

}
.

To apply the Picard-Lindelöf Theorem to our system, let x andf(x) be defined by

x =


T
T ∗

VI
VNI

 and f(x) =


λ− dT − (1− κ)kVIT

(1− κ)kVIT − δT ∗
(1− η)NT δT

∗ − cVI
ηNT δT

∗ − cVNI


The Jacobian matrix of our system is then given by:

−d− (1− κ)kVI 0 −(1− κ)kT 0
(1− κ)kVI −δ (1− κ)kT 0

0 (1− η)NT δ −c 0
0 ηNT δ 0 −c


Note that the partial derivatives of f exist and are continuous, which implies that f is Lipschitz

continuous. Therefore, there exists a unique solution to our system on some interval [0, t∗].

1.2 Equilibria

A set of values (T0, T
∗
0 , VI0, VNI0) is an equilibrium of our system if

dT

dt
=
dT ∗

dt
=
dVI
dt

=
dVNI
dt

= 0

when we set T = T0, T ∗ = T ∗0 , VI = VI0, and VNI = VNI0. At the equilibrium, the values of T , T ∗,
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VI , and VNI do not change. To find the equilibria for the system, consider the following equations:

dT

dt
= λ− dT0 − (1− κ)kVI0T0 = 0 (5)

dT ∗

dt
= (1− κ)kVI0T0 − δT ∗0 = 0 (6)

dVI
dt

= (1− η)NT δT
∗
0 − cVI0 = 0 (7)

dVNI
dt

= ηNT δT
∗
0 − cVNI0 = 0 (8)

Solving equations (7) and (8) for T ∗0 gives:

T ∗0 =
cVI0

(1− η)NT δ
and T ∗0 =

cVNI0
ηNT δ

.

Then, setting these two equations equal to each other, we have:

cVI0
(1− η)NT δ

=
cVNI0
ηNT δ

=⇒ ηVI0 = (1− η)VNI0.

From this result, we solve for VI0 in terms of VNI0 as well as VNI0 in terms of VI0, and obtain

VI0 =
(1− η)

η
VNI0 and VNI0 =

η

(1− η)
VI0.

Substituting T ∗0 in terms of VI0 into equation (6) then yields

(1− κ)kVI0T0 − δ
[

cVI0
(1− η)NT δ

]
= 0.

Solving this equation for the value of T0, we obtain

T0 =
c

(1− κ)(1− η)kNT
.

Then, applying our steady state solution for T0 to equation (5), we have

λ− d
[

c

(1− κ)(1− η)kNT

]
− (1− κ)k

[
c

(1− κ)(1− η)kNT

]
VI0 = 0.

Solving this equation for VI0 yields

VI0 =
(1− η)NTλ

c
− d

(1− κ)k
.

Then, applying this substitution to our equation for VNI0 in terms of VI0, we have:

VNI0 =
η

1− η

[
(1− η)NTλ

c
− d

(1− κ)k

]
=
ηNTλ

c
− dη

(1− η)(1− κ)k
.

Finally, applying this substitution for VNI0 to our equation for T ∗0 in terms of VNI0, we obtain

T ∗0 =
c

ηNT δ

[
ηNTλ

c
− dη

(1− η)(1− κ)k

]
=
λ

δ
− cd

(1− η)(1− κ)NT δk
.

Therefore, our equilibrium is given by the following values:

T0 =
c

(1− κ)(1− η)kNT
, T ∗0 =

λ

δ
− cd

(1− η)(1− κ)NT δk
,

VI0 =
(1− η)NTλ

c
− d

(1− κ)k
, and VNI0 =

ηNTλ

c
− dη

(1− η)(1− κ)k
.
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2 Solutions to the Deterministic Model for HIV-1 Dynamics

2.1 Introduction to the Simplified Model

One of the goals of this project was to find the analytical solution to the T, T ∗, VI , VNI model. Since
it is difficult to compute an analytical solution to the full system, we use a simplified version of
the model which includes terms involving cell production rates, death rates of infected cells, virus
production, and drug efficacy of both protease and reverse transcriptase inhibitors. This simplified
model is given by the following system of equations:

dT

dt
= −(1− κ)kVIT (9)

dT ∗

dt
= (1− κ)kVIT − δT ∗ (10)

dVI
dt

= (1− η)NT δT
∗ (11)

dVNI
dt

= ηNT δT
∗ (12)

Note that the removal of λ, the constant representing production of susceptible cells, results
in no positive terms on the right hand side of equation (9), and therefore the number of susceptible
CD4+ T-cells is always decreasing. The term (1 − κ)kVIT represents the rate of infection of
susceptible cells under the effects of protease inhibitors. The rate of infection is proportional to VI
and T , with proportionality constants k and (1− κ), which are the infection rate constant and the
efficacy of the protease inhibitors, respectively.

In equation (10), the term δT ∗ represents the death rate of infected cells. This rate is propor-
tional to the population of infected cells with proportionality constant δ.

Removal of the terms including the viral clearance rate c in equations (11) and (12) mean
that the right hand side of these equations will always be positive. Therefore, the amount of
virus present in the body will always be increasing. As mentioned in Chapter 1, the term NT δT

∗

represents the rate of production of virus particles. This production rate is proportional to T ∗,
with proportionality constant NT δ. To account for the efficacy of RT inhibitors (which determines
the proportion of virus produced as noninfectious), this rate of production is multiplied by the
constant (1− η) in equation (11) and η in equation (12).

2.2 Analytical Solution to the Simplified Model

In this section, we will find an analytical solution to the simplified model given by:

dT

dt
= −(1− κ)kVIT (13)

dT∗
dt

= (1− κ)kVIT − δT ∗ (14)

dVI
dt

= (1− η)NT δT
∗ (15)

dVNI
dt

= ηNT δT
∗ (16)

The initial conditions of this model are:

T (0) = T0, T ∗(0) = T ∗0 , VI(0) = VI0, and VNI(0) = VNI0.
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Note that

d

dt

[
T + T ∗ +

1

NT
(VI + VNI)

]
= 0 and

d

dt

[
VI +

(
η − 1

η

)
VNI

]
= 0.

Therefore,

T + T ∗ +
1

NT
(VI + VNI) = P and VI +

(
η − 1

η

)
VNI = PV ,

where P and PV are constants, with P representing total population of white blood cells and virus
in the body and PV representing the total viral population in the body. Then from these equations,

T = P − T ∗ − 1

NT
(VI + VNI) and T ∗ = P − T − 1

NT
(VI + VNI),

VI = PV −
(
η − 1

η

)
VNI and VNI =

(
η

η − 1

)
(PV − VI) .

Additionally, with the initial conditions defined above, we have:

P = T0 + T ∗0 +
1

NT
(VI0 + VNI0) and PV = VI0 +

(
η − 1

η

)
VNI0.

To obtain an analytical solution for this simplified model, we will first use an iterative tech-
nique to obtain an implicit solution for VI , and use this solution to solve for VNI , T , and T ∗ in the
simplified model.

We begin by differentiating
dVI
dt

and applying substitutions for T and VNI to obtain the

second derivative of VI with respect to time. For the sake of simplicity, in the calculations below,
let α = (1− η)δ(1− κ)k and ω = αNT = (1− η)NT δ(1− κ)k.

d2VI
dt2

= (1− η)NT δ
[
(1− κ)kVIT − δT ∗

]
= (1− η)NT δ(1− κ)kVIT − δ

[
(1− η)NT δT

∗]
= (1− η)NT δ(1− κ)kVIT − δ

dVI
dt

= (1− η)NT δ(1− κ)kVI
[
P − T ∗ − 1

NT

(
VI + VNI

)]
− δ dVI

dt

= ωVI

[
P − 1

NT

(
VI + VNI

)]
− (1− η)NT δ(1− κ)kVIT

∗ − δ dVI
dt

= ωVI

[
P − 1

NT

(
VI + VNI

)]
− (1− κ)kVI

dVI
dt
− δ dVI

dt

= ωPVI − αV 2
I − αVNIVI − (1− κ)kVI

dVI
dt
− δ dVI

dt

= ωPVI − αV 2
I − αVI

(
η

η − 1

)
(PV − VI)− (1− κ)kVI

dVI
dt
− δ dVI

dt

= ωPVI − αV 2
I − α

(
η

η − 1

)
PV VI + α

(
η

η − 1

)
V 2
I − (1− κ)kVI

dVI
dt
− δ dVI

dt
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Then the second derivative of VI with respect to time is:

V ′′I = ωPVI − αV 2
I − α

(
η

η − 1

)
PV VI + α

(
η

η − 1

)
V 2
I − (1− κ)kVIV

′
I − δV ′I

=

[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI − (1− κ)kVIV

′
I − δV ′I

Let u =
dt

dVI
=

1

V ′I
. Then:

du

dVI
=

[
du

dt

] [
dt

dVI

]
= [−(V ′I )−2V ′′I ](V ′I )−1 = −(V ′I )−3(V ′′I )

= −
[

1

V ′I

]3
[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI − (1− κ)kVIV

′
I − δV ′I

]

=

[
−
[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI

]
u3 +

[
(1− κ)kVI + δ

]
u2

Note that the initial condition for u is

u(VI0) =
1

(1− η)NT δT ∗0

Let φ = ln(u). Then u = eφ. Then:

dφ

dVI
=

[
dφ

du

][
du

dVI

]
=

1

eφ

[
du

dVI

]
=

1

eφ

[[
(1− κ)kVI + δ

]
u2 −

([
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

)
u3

]

=
1

eφ

[[
(1− κ)kVI + δ

]
e2φ −

([
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

)
e3φ

]

=
[
(1− κ)kVI + δ

]
eφ −

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

]
e2φ

The initial condition for φ is then given by

φ(VI0) = − ln
(
(1− η)NT δT

∗
0

)
.

We can use the Taylor series expansion of eφ to rewrite this equation as

dφ

dVI
=
[
(1− κ)kVI + δ

][ ∞∑
n=0

φn

n!

]
−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][ ∞∑
n=0

(2φ)n

n!

]

=
[
(1− κ)kVI + δ

][
1 + φ+

φ2

2
+ · · ·

]
−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
1 + 2φ+

(2φ)n

2
+ · · ·

]
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For a first approximation, namely φ1(VI), use the first two terms of the Taylor series:

dφ1

dVI
=
[
(1− κ)kVI + δ

][
1 + φ1

]
−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
1 + 2φ1

]

=

(
(1− κ)kVI + δ −

[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI

)

+

(
(1− κ)kVI + δ − 2

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

])
φ1

This result is a first order linear differential equation of the form
dφ1

dVI
= Q(VI) +R(VI)φ1, where

Q(VI) = (1− κ)kVI + δ −
[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI ,

R(VI) = (1− κ)kVI + δ − 2

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

]
.

We can solve this differential equation using an integrating factor, F (VI) = e−
∫
R(VI)dVI . The

integrating factor that will be used is given by:

F (VI) = e
2
3

[
α
(

η
η−1

)
−α
]
V 3
I +
[
ωP−α

(
η
η−1

)
PV

]
V 2
I −

1
2

(1−κ)kV 2
I −δVI

Applying this integrating factor to solve the differential equation above, we have:∫ VI

VI0

d

dξ

[
F (ξ)φ1(ξ)

]
dξ =

∫ VI

VI0

F (ξ)

[
(1−κ)kξ+ δ−

[
α

(
η

η − 1

)
−α
]
ξ2−

[
ωP −α

(
η

η − 1

)
PV

]
ξ

]
dξ

We then obtain the solution to the φ1, the first approximation for φ:

φ1(VI) =
1

F (VI)

[
F (VI0)φ1(VI0)+

∫ VI

VI0

F (ξ)

[
(1−κ)kξ+δ−

[
α

(
η

η − 1

)
−α
]
ξ2−

[
ωP−α

(
η

η − 1

)
PV

]
ξ

]
dξ

]

Note that
dφ

dVI
can be rewritten in the following manner:

dφ

dVI
=

[
(1− κ)kVI + δ

][
1 + φ+

∞∑
n=2

φn

n!

]

−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
1 + 2φ+

∞∑
n=2

(2φ)n

n!

]
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We can then obtain a second approximation to φ, φ2, by plugging φ1 (our first approximation) into
the infinite sum expression above:

dφ2

dVI
=

[
(1− κ)kVI + δ

][
1 + φ2 +

∞∑
n=2

(φ1)n

n!

]

−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
1 + 2φ2 +

∞∑
n=2

(2φ1)n

n!

]

=

[
(1− κ)kVI + δ −

[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI

]

+

[
(1− κ)kVI + δ − 2

([
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

)]
φ2

+

∞∑
n=2

[
(1− κ)kVI + δ

][
(φ1)n

n!

]
−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
(2φ1)n

n!

]

This result is another first order differential equation, which can again be solved using an integrating
factor. Note that the coefficient for φ2 in this equation is the same as the coefficient for φ1 in the
differential equation solved earlier, and therefore we will use the same integrating factor, F (VI).
Using this integrating factor, we obtain the following solution for φ2(VI):

φ2(VI) =
1

F (VI)

[
F (VI0)φ2(VI0)

]
+

1

F (VI)

[∫ VI

VI0

F (ξ)

[
(1− κ)kξ + δ −

[
α

(
η

η − 1

)
− α

]
ξ2 −

[
ωP − α

(
η

η − 1

)
PV

]
ξ

]
dξ

]

+
1

F (VI)

∫ VI

VI0

F (ξ)

∞∑
n=2

[
(1− κ)kξ + δ

][
(φ1)n

n!

]
−

[[
α

(
η

η − 1

)
− α

]
ξ2 +

[
ωP − α

(
η

η − 1

)
PV

]
ξ

][
(2φ1)n

n!

]
dξ

We can continue this process to get successively more accurate approximations to φ. In general,
for any integer m > 1, we have:

φm+1(VI) =
1

F (VI)

[
F (VI0)φm+1(VI0)

]
+

1

F (VI)

[∫ VI

VI0

F (ξ)

[
(1− κ)kξ + δ −

[
α

(
η

η − 1

)
− α

]
ξ2 −

[
ωP − α

(
η

η − 1

)
PV

]
ξ

]
dξ

]

+
1

F (VI)

∫ VI

VI0

F (ξ)

∞∑
n=2

[
(1− κ)kξ + δ

][
(φm)n

n!

]
−

[[
α

(
η

η − 1

)
− α

]
ξ2 +

[
ωP − α

(
η

η − 1

)
PV

]
ξ

][
(2φm)n

n!

]
dξ

This term can be written more compactly as

φm+1(VI) = φ1(VI) +
1

F (VI)

∫ VI

VI0

F (ξ)

[
(1− κ)kξ + δ

][
eφm(ξ) − 1− φm(ξ)

]
dξ

− 1

F (VI)

∫ VI

VI0

F (ξ)

[[
α

(
η

η − 1

)
− α

]
ξ2 +

[
ωP − α

(
η

η − 1

)
PV

]
ξ

][
e2φm(ξ) − 1− 2φm(ξ)

]
dξ
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Each successive approximation of φ(VI) becomes closer and closer to the actual solution of φ(VI).
In other words,

lim
m→∞

φm(VI) = φ(VI).

With this limit, we have obtained a solution to φ(VI), and we can now work backwards to obtain
the solution of VI . Recall that

dt

dVI
= eφ(VI).

Separating variables and integrating both sides, we have∫ t

t0

dξ =

∫ VI

VI0

eφ(ξ)dξ.

Then, taking t0 = 0, we have VI(t) given implicitly by:

t =

∫ VI

VI0

eφ(ξ)dξ.

Now that we have obtained an implicit solution for VI , we can use this solution to find solutions
for T , T ∗, and VNI . First, the solution for VNI can be found using the following equation:

VNI =

(
η

η − 1

)
(PV − VI).

We will now obtain a solution for T . Recall that

dT

dt
= −(1− κ)kVIT.

Separating variables and integrating,∫ T

T0

1

ξ
dξ = −(1− κ)k

∫ t

t0

VI(ξ)dξ.

Taking t0 = 0,

T = T0e
−(1−κ)k

∫ t
0 VI(ξ)dξ.

Finally, we can obtain a solution for T ∗. Recall that

T ∗ = P − T − 1

NT

(
VI + VNI

)
Therefore, applying the solutions for T ∗, VI , and VNI obtained above, we have:

T ∗ = P − T0e
−(1−κ)k

∫ t
0 VI(ξ)dξ − 1

NT

[
VI +

(
η

η − 1

)
(PV − VI)

]
2.3 Numerical Solution to the Simplified Model

The following figure depicts a numerical solution to this simplified model, with initial conditions
T0 = 10, T ∗0 = 0, VI0 = 0.1, and VNI0 = 0, and parameter values k = 1.179 × 10−3, δ = 0.366,
NT = 4246.4, κ = 0.6, and η = 0.6.
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Figure 1: Approximate solution for T , T ∗, VI , and VNI in the simplified model.

The differences in the class sizes of T and T ∗ compared to VI and VNI make it difficult to
understand the behavior of each class in the above figure. Consider Figure 2 below, which shows
the approximate solutions of T and T ∗ separate from the approximate solutions of VI and VNI to
make it easier to observe the information this simplified model gives about the behaviors of each
of these classes over time.
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Figure 2: Approximate solution for T , T ∗, VI , and VNI in the simplified model.
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Note that because of the removal of the susceptible cell birth rate λ from the model, the
amount of susceptible cells T is always decreasing, until it reaches its steady state. Additionally,
because of the removal of the viral clearance rate, the class sizes of VI and VNI are always increasing
until they reach their steady states. In the next section, an approximate solution will be found to
the full deterministic model, which will produce a more biologically sound model for the study of
HIV-1 Dynamics.

2.4 Numerical Solution to the Full Deterministic Model

To produce a numerical approximation to our model, a predictor-corrector method was used
that combines the explicit four-step Adams-Bashforth Method and the implicit three-step Adams-
Moulton Method, and uses the Runge-Kutta Method of order four to obtain its starting values.

With initial conditions T0 = 10, T ∗0 = 0, VI0 = 0.1, and VNI0 = 0, and parameter values
λ = 0.1089, d = 0.01089, k = 1.179 × 10−3, δ = 0.366, NT = 4246.4, c = 3.074, κ = 0.6, and
η = 0.6, the following approximation was obtained:

0 10 20 30 40 50 60 70 80 90 100

Time

0

200

400

600

800

1000

1200

C
la

s
s
 S

iz
e

Numerical Susceptible, Infected, and Virus

T

T*

VI

VNI

Figure 3: Approximate solution for T , T ∗, VI , and VNI obtained by the Multistep Method.

In the figure above, it is difficult to see how T and T ∗ progress over time in the model, due
to the discrepancy in the class sizes between virus particles (VI and VNI) and CD4 T-cells (T and
T ∗). To get a better understanding of the behavior of each class as time progresses, it helps to plot
VI and VNI separately from T and T ∗, as in Figure 4 below.
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Figure 4: Top: Approximate solution for T and T ∗ obtained by the Multistep Method.
Bottom: Approximate solution for VI and VNI obtained by the Multistep Method.

From Figures 3 and 4, we can see that around t = 10 days, the amount of infectious and
non-infectious virus present in the body quickly increases, and as the viral concentration increases,
the amount of infected CD4 T-cells increases and the amount of uninfected (susceptible) CD4 T-
cells decreases. Once the virus concentration hits its peak and begins to decrease, the number of
infected cells in the body also decrease, and the number of susceptible cells slowly increases. This
pattern continues as time progresses, until each class reaches its steady state, as seen in Figure 5.
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Figure 5: Approximate solutions for T , T ∗, VI , and VNI , along with their steady state solutions.
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3 Solutions to the Stochastic Model for HIV-1 Dynamics

3.1 Preliminary Concepts

Definition 1. Let Ω be the set of all possible outcomes of a probabilistic experiment. A random
variable X is a function from the set of outcomes Ω to the set of real numbers [12].

Example 1. Consider an experiment in which a fair coin is tossed twice. The outcome of each coin
toss is either heads (H) or tails (T), so the set of all possible outcomes is Ω = {HH,HT,TH,TT}.
Let X be the number of heads that occur in one trial of this experiment. Then X is a random
variable, and the possible values of X are 0, 1, and 2.

Definition 2. Let X be a random variable. Then FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}) is called the
probability distribution function of X [5].

Definition 3. A random variable is defined to be discrete if it has a finite or countably infinite
number of outcomes [12].

Definition 4. A continuous random variable is a variable that can take on a continuum of values
rather than a finite or countably infinite number [10].

The random variable X in Example 1 is an example of a discrete random variable. Some
examples of continuous random variables include measurements of distance and speed, and passage
of time.

Definition 5. The probability mass function of a discrete random variable X, denoted pmf(x), is
given by p(x) = P (X = x) = P ({ω ∈ Ω : X(ω) = x})

Definition 6. The probability density function of a continuous random variable X, denoted pdf(x),
is the function p(x) such that FX(x) =

∫ x
−∞ p(s)ds.

The probability mass function and probability density functions are functions that describe
the probability properties of a random variable X [10]. The domain of these functions is the possible
values of the random variable X, and the range is the interval [0, 1].

Example 2. Suppose we toss a fair coin three times and observe the number of heads. Say we run
this experiment 30 times, with the following results: we observe one head in 12 trials, no heads in
10 trials, and two heads in 8 trials.

Here, pdf(0) = Pr(X = 0) is the probability of observing no heads when a coin is tossed three
times. Thus pdf(0) = 10

30 = 0.333. The values of pdf(1) and pdf(2) can be calculated in the same
way, and the resulting probability distribution function for the random variable X is given by:

pdf(x) =


10
30 = 0.333 when X = 0
12
30 = 0.4 when X = 1
8
30 = 0.267 when X = 2

Note that the domain of the probability distribution function are the possible values of X,
domain(pdf(x)) = {0, 1, 2}, and the resulting value is a number in the interval [0, 1].

Definition 7. A measure of location is a measure of the center of a set of numbers [10].

The most commonly used measure of location for a data set is the arithmetic mean, often
denoted by x̄, which is the sum of the observed values in a data set divided by the number of
observations in the set.
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Example 3. Consider the data set S = {42, 36, 89, 22, 10, 56}. The arithmetic mean of S is:

x̄ =
42 + 36 + 89 + 22 + 10 + 56

6
=

255

6
= 42.5.

Another measure of location for a random variable X is the median, which is a measure of
the center of all observed outcomes of X. For an odd sample size, the median is the middle value
of the ordered observations. For an even sample size, the median is the average of the two values
in the middle of the ordered observations [10].

Example 4. Consider the data set S in Example 2, which has 6 observations. To find the median,
we put these six observations in numerical order and take the average of the two observations in
the middle of the set:

S = {10, 22, 36, 42, 56, 89} → median(S) =
36 + 42

2
= 39.

The median is sometimes used as a measure of the center (rather than the arithmetic mean)
because it is robust, meaning it is insensitive to extremely large or small values in the data [10].

Example 5. To understand this idea of robustness, suppose we perform ten trials of an experiment,
where we toss a fair coin 400 times and record the number of heads observed. Consider two possible
outcomes of this experiment, S1 and S2 as defined by:

S1 = {232, 174, 259, 180, 183, 186, 400, 226, 172, 215}
S2 = {232, 174, 259, 180, 183, 186, 276, 226, 172, 215}

Note that the only difference between these two sets of outcomes is the observation of the
seventh trial, in which we observed 400 heads in S1 and 276 heads in S2. To find the median of
each set, we place the observed values in order and take the average of the middle two values:

S1 = {172, 174, 180, 183, 186, 215, 226, 232, 259, 400} → median(S1) =
186 + 215

2
= 200.5

S2 = {172, 174, 180, 183, 186, 215, 226, 232, 259, 276} → median(S2) =
186 + 215

2
= 200.5

Note that the median of S1 and the median of S2 are the same, because the positioning of the
numbers in the ordered data is not affected by the exact value of the largest number in the data set.
Now, to find the arithmetic mean of each set, we simply take the sum of the data values and divide
by the number of observations:

mean(S1) =
232 + 174 + 259 + 180 + 183 + 186 + 400 + 226 + 172 + 215

10
=

2227

10
= 222.7

mean(S2) =
232 + 174 + 259 + 180 + 183 + 186 + 276 + 226 + 172 + 215

10
=

2103

10
= 210.3

We can see that the mean of S1 is larger than the mean of S2; this difference is because each
data value is used to compute the mean, and therefore extremely large or small data values will
skew the mean in the direction of the extreme value. In this case, the set of observations S1 had a
large value of 400, and therefore its mean was larger than that of S2.
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3.2 Patient Data

Data for 176 HIV-infected persons was retrospectively collected from medical records of Severance
Hospital, South Korea. The patient data consists of observed values for the following variables: S0,
I0, V0, λ, d, k, µ, NT , c, η, and ε.

The variables of this data set correspond with the initial conditions and parameters of our
system in the following manner:

Our System Patient Data Interpretation

T0 S0 Initial number of susceptible CD4 T-cells present in the body.

T ∗0 I0 Initial number of infected CD4 T-cells present in the body.

VI0 V0 Initial amount of virus present in the body.

VNI0 - Initial amount of non-infectious virus present in the body.

λ λ Production rate of CD4-T cells.

d d Death rate of susceptible CD4-T cells.

k k Viral infection rate.

δ d+ µ Death rate of infected CD4 T-cells.

NT NT Viral production rate.

c c Viral clearance rate.

κ η Reverse transcriptase inhibitor efficacy.

η ε Protease inhibitor efficacy.

Table 2: Relation of the variables in the patient data set to the initial conditions and parameters
of the model, along with their interpretations.

Note that no variable in the patient data provided corresponds directly to the initial amount
of non-infectious virus present in the body, which is the initial condition VNI0 in our model. For
the purposes of producing an approximate solution, we will assume that VNI0 = 0 for each patient.

The arithmetic mean, or average, of each of the variables in the patient data can be computed
by adding all observed values of the variable, and dividing by the sample size, which is the number
of patients in the data set. Because we have an even sample size, the median of each variable can
be computed by taking the average of the two values in the middle of the ordered observations.
Average and median values for each variable in the patient data can be seen in the table below.

Variable Mean Value Median Value

T0 254.995 238.428

T ∗0 9.820 2.965

VI0 9.8832 0.09127

λ 8.3978 2.388

d 0.0138 0.00447

k 0.15739 0.00264

δ 0.4888 0.01076

NT 6039.344 44.938

c 553.618 8.968

κ 0.69886 0.6

η 0.3034 0.6

Table 3: Mean and median values for each variable in the patient data set.
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Note that for some variables in the patient data, the differences between the average and
median values are very large in relation to the values the variables take on themselves. For example,
the mean value of the viral clearance rate c is 553.618, while its median value is 8.968.

The mean of a random variable is not robust because it is sensitive to outliers, which are
observations of a random variable that are far from most of the observed values of that same
variable in the data set [10].

Whether or not an observation is an outlier can be determined computationally using the
interquartile range (IQR) of the data, which is a measure of its dispersion. The IQR can be
computed by finding the difference between the 25th and 75th percentiles of the data.

Let Q3 denote the 75th percentile of the data, and Q1 denote the 25th percentile of the data.
Then the interquartile range is IQR = Q3 − Q1. An observation x is defined to be an outlier if
x < Q1 − (1.5 × IQR) or if x > (1.5 × IQR) + Q3. In the former case, x is referred to as a low
outlier, and in the latter case, x is referred to as a high outlier.

Boxplots are a convenient way to visually describe the data and determine which points in a
data set are outliers, and how much these points impact the mean. A boxplot is created using the
median and interquartile range of the data. As an example, consider Figure 6, a boxplot of the
initial condition T0 in the patient data.
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Figure 6: Boxplot of initial condition T0 in patient data.

The blue box represents the bounds of the interquartile range of T0. The top line of the blue
box is the 75th percentile of the data, and the bottom line of the box is the 25th percentile of the
data. The dotted black line represents the spread of the entire data set, with the maximum value of
the data corresponding to the top black line and the minimum value of the data set corresponding
to the bottom black line.

To get a better understanding of how outliers can be identified through the use of boxplots,
consider the Figure 7 below, a boxplot of the variable λ in the patient data.
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Figure 7: Boxplot of random variable λ in patient data.

Again, the blue box represents the interquartile range of λ, with the red line signifying the
median of the data set, and the bottom and top lines of the blue box corresponding to the 25th

and 75th percentiles of the data, respectively. Each red cross above the blue box represents a high
outlier of the data set.

Note that there are many high outliers in the set of observations of λ. Because of these outliers,
it is difficult to get a good understanding of the distribution of λ from this plot. A boxplot of the
random variable λ after removal of outliers can be seen below.
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Figure 8: Boxplot of random variable λ in patient data after removal of outliers.

Note that even after removal of the original outliers, there are still outliers present in our data
set. In this case, removal of outliers impacted the values of the 25th and 75th percentiles of the
data, and therefore the criteria for a data point being an outlier changed as well. However, we can
still see that after removal of the initial outliers the underlying distribution of λ is much clearer.
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Generally, when trying to identify underlying trends in the distributions of data sets, it is not
advised to completely remove outliers and make firm statistical conclusions with the new data set.
However, in our case, the data is being used to identify underlying distributions of each random
variable, and therefore it is beneficial to temporarily remove the outliers from the data to determine
the possible distributions of each variable.

The impact of outliers on the average value of a random variable is further illustrated in the
table below, which shows mean and median values for each variable in the patient data before the
removal of outliers, as well as the mean and median values after the outliers were removed for each
individual variable. Boxplots for each variable before and after removal of outliers are also included.

Variable
Before Removal of Outliers After Removal of Outliers
Mean Value Median Value Mean Value Median Value

T0 254.995 238.428 254.995 238.428

T ∗0 9.820 2.965 4.144 12.296

VI0 9.8832 0.09127 0.1355 0.06209

λ 8.3978 2.388 3.716 1.899

d 0.0138 0.00447 0.0074 0.00371

k 0.15739 0.00264 0.00405 0.001515

δ 0.4888 0.01076 0.01933 0.00723

NT 6039.344 44.938 49.6379 35.6186

c 553.618 8.968 16.655 7.059

κ 0.69886 0.6 0.69886 0.6

η 0.3034 0.6 0.3034 0.6

Table 4: Mean and median values of each variable before and after the removal of outliers.
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Figure 9: Comparison of T0 boxplot before and after outlier removal.
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Figure 10: Comparison of T ∗0 boxplot before and after outlier removal.
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Figure 11: Comparison of VI0 boxplot before and after outlier removal.
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Figure 12: Comparison of λ boxplot before and after outlier removal.
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Figure 13: Comparison of d boxplot before and after outlier removal.
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Figure 14: Comparison of k boxplot before and after outlier removal.
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Figure 15: Comparison of δ boxplot before and after outlier removal.
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Figure 16: Comparison of NT boxplot before and after outlier removal.
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Figure 17: Comparison of c boxplot before and after outlier removal.
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Figure 18: Comparison of κ boxplot before and after outlier removal.
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Figure 19: Comparison of η boxplot before and after outlier removal.

3.3 The Monte Carlo Method

The Monte Carlo Method is a technique used to analyze phenomena demonstrated by stochastic
systems of equations by use of the generation of random numbers [12]. In order to understand
the underlying process of the Monte Carlo Method, it is crucial to understand the concepts of the
probability function and expected value of a random variable.

Recall from Definitions 5 and 6 in Section 3.1 that the probability mass function and proba-
bility density function are functions that describe the probability properties of a random variable
X.

Definition 8. The expected value of a random variable X, often referred to as the mean or weighted
average of X, denoted E(X), is the average of the values we expect to obtain when multiple trials
of an experiment are observed [12].

For a discrete random variable, we use the formula E(X) =
∑

Ω x pdf(x), and for a continuous
random variable, E(X) =

∫∞
−∞ x pdf(x)dx.

Example 6. Recall the 30 trial coin-toss experiment from Example 2 in Section 3.1. Since X is a
discrete random variable, E(X) =

∑
Ω x pdf(x), and we have

E(X) = (0 · pdf(0)) + (1 · pdf(1)) + (2 · pdf(2))

= (0 · 0.333) + (1 · 0.4) + (2 · 0.267) = 0.934.

Therefore, based on the information that has been gathered from this experiment, on average, we
expect to observe heads 0.934 times when a fair coin is tossed three times.

The Monte Carlo Method essentially works in the following manner: we will generate inde-
pendent random observations X1, X2, . . . , Xn for each random variable in our model and use these
observations to obtain a solution to our model. We then find the expected value of these solutions,
and the result of this calculation is the solution to our stochastic model by the Monte Carlo Method.

To use this method on our stochastic system, we need to identify the probability distributions
of each random variable in the model. One way to determine the possible underlying probability
distributions of data sets is to create a histogram of the data to visualize its distribution. The
figures below show histograms for each random variable in the patient data set.
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Because the purpose of creating these histograms is to get an idea of the distribution of each
data set, the outliers of each data set were removed before the histograms were created.
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Figure 20: CD4 T-cell production rate.
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Figure 21: CD4 T-cell infection rate.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Value of d

0

10

20

30

40

50

60

70

80

90

F
re

q
u

e
n

c
y

Histogram of d

Figure 22: Susceptible CD4 T-cell death rate.
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Figure 23: Infected CD4 T-cell death rate.
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Figure 24: Virion production rate.
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Figure 25: Viral clearance rate.
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Figure 26: Initial CD4 T-cell count.

0 100 200 300 400 500 600 700 800

Value of T*
0

0

5

10

15

20

25

30

35

40

45

50

F
re

q
u

e
n

c
y

Histogram of T*
0

Figure 27: Initial infected T-cell count.
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Figure 28: Initial concentration of infectious virus.
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Figure 29: RT inhibitor efficacy.
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Figure 30: Protease inhibitor efficacy.
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The histograms of λ, k, d, δ, NT , c, T0, T ∗0 , and VI0 all seem to resemble the shape of either an
exponential or gamma distribution. The probability density function of a gamma random variable
is given by the function

g(t) =
βα

Γ(α)
tα−1e−βt,

where t ≥ 0, the parameters α, β > 0, and Γ(α) = (α− 1)! [10].
The exponential distribution is a special case of the gamma distribution with α = 1, and

therefore its probability density function is given by

f(x) = βe−βx,

where x ≥ 0 and the parameter β > 0 [10].
The histograms of κ and η, however, do not resemble either an exponential or a gamma

distribution. The shape of their histograms are very different from the rest, and the distribution
they most closely resemble is that of a uniform distribution. According to [10], the probability
density function of a continuous uniform distribution on the general interval [α, β] is given by

f(x) =
1

β − α
, α ≤ x ≤ β.

In order to use these distributions to generate random samples for each of these random
variables in the model, we need to estimate the parameters of each distribution based on the patient
data. The parameter estimates for each of these distributions was obtained using the Method of
Moments as described in [10], with the following results:

Random Variable Estimated Distribution and Parameter Values

T0 Gamma (α = 1.802, β = 141.4863)

T ∗0 Exponential (β = 0.2413)

VI0 Gamma (α = 0.013898, β = 0.26095)

λ Exponential (β = 0.2691)

d Exponential (β = 135.3297)

k Gamma (α = 0.5086, β = 0.00796)

δ Exponential (β = 51.7362)

NT Exponential (β = 0.02015)

c Gamma (α = 0.5675, β = 29.3465)

κ Uniform (α = 0.6, β = 0.8)

η Uniform (α = 0, β = 0.6)

Table 5: Parameter estimates for the distributions of each random variable in the model.

3.4 Numerical Solution to the Stochastic Model

The distributions in Table 5 were used to generate random values for each variable using MATLAB
random generators. The expected values of the solutions to T , T ∗, VI , and VNI were then computed.
Figure 31, seen below, is an example of the output produced by the Monte Carlo Method.
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Figure 31: Approximate solution to the stochastic model obtained using the Monte Carlo Method.

A solution to the model was also computed using simply the average of the random values
obtained for each variable in the model. The output of this solution is seen in the figure below.
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Figure 32: Approximate solution to the stochastic model obtained using the average values of the
random samples for each random variable in the model.

The output seen in Figure 31 is similar to the behavior we would expect in this model based
on the approximation to the deterministic solution obtained in Chapter 2. However, because of
the randomness involved in the Monte Carlo Method, it is interesting to see how the differences in
parameters and initial conditions change the behavior of the model. Consider Figures 33 through
36 below.
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Parameter Value

T0 88.0686

T ∗0 4.5488

VI0 4.4013× 10−25

λ 2.0098

d 0.031

k 2.771× 10−5

δ 0.0069

NT 59.9326

c 2.5783

κ 0.7078

η 0.4189

Figure 33: Example of an approximate solution obtained using Monte Carlo Method.

In Figure 33, we see an example of a patient whose susceptible cell count is steadily increasing,
seemingly without bound. This increase is likely due to the high value of the parameter λ relative
to the constants d and k, as well as the high initial CD4+ T-cell count, contrasted by the low
initial virus concentration.
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Figure 34: Example of an approximate solution obtained using Monte Carlo Method.
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In Figure 34, we see an example of a patient whose virus concentration initially grows in what
appears to be an exponential fashion, and then slowly begins to level off. This high increase in
virus concentration is likely due to the low viral clearance rate (c) combined with a low level of
efficacy for the RT inhibitor (η).
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Figure 35: Example of an approximate solution obtained using Monte Carlo Method.

In Figure 35, we see that virus concentration slowly increases (in contrast to Figure 34 above, in
which we saw virus concentration increasing extremely quickly). In this scenario, it appears that
we have a fairly high viral production rate due to the values of NT and δ being relatively high
compared to the previous scenarios.
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Figure 36: Example of an approximate solution obtained using Monte Carlo Method.
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The patient in Figure 36 has an extremely small amount of infectious virus initially present in the
body. However, the high viral production rate (NT δ) allows the virus concentration to grow fairly
quickly early on. This high viral production rate is then contrasted by the relatively high viral
clearance rate, which causes the virus population to hit a peak and begin to decrease. The behavior
of VI and VNI in this model is similar to the behavior we would expect based on the analysis of
the numerical approximation to the deterministic model in Chapter 2.

Use of the Monte Carlo Method with the probability distributions of each constant and initial
condition allows us to account for the randomness that occurs biologically within the model. Ob-
taining a solution to the stochastic model gives us a better understanding of how HIV-1 Dynamics
may change in a given patient due to differences in model parameters.

4 Conclusion

This research concludes our analysis of HIV-1 dynamics using the T , T ∗, VI , VNI model. In this
project, we obtained an analytical solution to a simplified version of the model that included only
healthy cell production rate, death rates, viral production rate, and efficacy of treatment methods.
We also used a Multistep Method to obtain a numerical solution to the full deterministic system.
We then discussed a stochastic version of the system, and used the Monte Carlo Method to obtain
a numerical approximation to the solution of our stochastic system. The results of this project
display the development of HIV-1 in an infected patient under the effect of reverse transcriptase
and protease inhibitors, and these results are made more practical with the inclusion of an element
of randomness in the stochastic system of equations.
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