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Abstract

Graph theory is the study of sets of points (known as vertices) connected by lines
(known as edges). The n-coloring game is a game played on a graph G with two
players, Alice and Bob, such that they alternate to properly color vertices, meaning no
adjacent vertices are the same color. Alice wins if every vertex is properly colored with
n colors, otherwise Bob wins when a vertex cannot be colored using one of the avaliable
colors. While strategies for winning this game may seem helpful, more interesting to
us is the least number of colors needed for Alice to have a winning strategy, which is
called the game chromatic number of G denoted χg(G). It is known that tree graphs
have a game chromatic number of at most 4, but all the criteria for a tree T to have
χg(T ) = 4 is unknown. To help in answering this question, we give the classification
of a subclass of trees, which we call segmented caterpillar graphs. Caterpillars have
at least one of each vertex of degree 2, 3, and 4, and therefore the game chromatic
number cannot be determined by previous results.

1 Introduction

To acclimate the reader to graph theory, we begin in Section 1 with definitions of key terms
about graphs and proceed on to define the coloring game. While competitive coloring is
well researched, mathematicians have posed many open questions about the coloring game.
Specifically, there are unsolved results of the game chromatic number of trees, which we define
in Section 2. Then in Section 3, we then focus on a class of trees, known as caterpillars.
This lead us to in Section 4 to define a new subclass of caterpillars, which we call segmented
caterpillars. Building upon past results, we identified the game chromatic number for an
infinite class of segmented caterpillars.

1.1 Graph Theory

Graph theory is the study of graphs G, which consists of sets of vertices and denoted V (G),
and sets of unordered pairs of vertices, known as edges and denoted as E(G) [2]. Edges are
depicted in illustrations as lines joining pairs of vertices, which are represented by points.
There are many classes of graphs, but for this paper we focus on simple graphs. In a simple
graph, each pair of vertices can have at most one edge join that pair of vertices. Vertices are
adjacent if the vertices are connected by a single edge. The adjacent vertices of a vertex v
can be called the neighbors of v.

Each vertex in a graph has a degree, which is the number of edges incident with that vertex.
In a simple graph, the degree of vertex is equal to the number of neighbors. The maximum
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degree over all vertices in a graph G is denoted as ∆(G).

u v

w x

Figure 1: Graph G

For example, in Figure 1 the simple graph G has the set of vertices as V (G) = {u, v, w, x} and
set of edges E(G) = {uv, uw, vw}. Note for this paper, the graphs are undirected, meaning
there is no direction on the edge between adjacent vertices. Thus in Figure 1, uv = vu is
true. Also, notice that vertex u is adjacent to v and w, but x does not have any neighbors.
For this graph the ∆(G) = 2 and the degree of x is 0.

Two graphs G and H are vertex disjoint if V (G) ∩ V (H) = ∅ and edge disjoint if E(G) ∩
E(H) = ∅. If G and H are both vertex disjoint and edge disjoint, then G and H are
disjoint. The graph G′ is a subgraph of G if E(G′) ⊆ E(G) and V (G′) ⊆ V (G) [2]. The
subgraph G′ is an induced subgraph if G′ contains all edges uv ∈ E(G) for u, v ∈ V (G′).
For example in Figure 1, let H1 and H2 be subgraphs of G such that V (H1) = {u, v, w},
E(H1) = {uv, uw}, and V (H2) = {x}. In G, only H2 is an induced subgraph because H2

contains all the original G edges between the vertices in the subgraphs. The subgraph H1

does not contain the edge vw as seen in the graph G in Figure 1, so H1 is not an induced
subgraph. Also, H1 and H2 are disjoint since H1 and H2 do not share any edges or vertices.

A path P is a graph or subgraph with n distinct vertices V (P ) = {v1, v2, . . . , vn} and n− 1
distinct edges E(P ) = {v1v2, . . . , vn−1vn} [2]. The length of a path is its number of edges. In
any graph, the distance from vertex v to vertex u is the length of the shortest path between
the two vertices. Connected graphs have a path between every pair of vertices.

1.2 Coloring Game

Both edges and vertices can be colored in graphs either by physical colors shown on figures
or through a function that assign labels to the graph. For our paper, we are only concerned
with coloring vertices. For a graph G, we denote the coloring function c : V (G) → C such
that C is the set of all colors. Typically in our paper, α represents red, β represents blue, γ
represents yellow, and a gray vertex means the vertex is colored with one of the three colors
in C = {∅, α, β, γ}. If c(v) = ∅, then vertex v is uncolored.

Vertices are properly colored if adjacent vertices v and u are colored differently such that
c(v) 6= c(u). The chromatic number of graph G is χ(G), which is the minimum number of
colors required for every vertex in G to be properly colored.
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u v

w x

Figure 2: Graph G with c(u) = α, c(v) = c(w) = β

Let us look to Figure 2 as an example where c(u) = α, c(w) = c(v) = β, and c(x) = ∅. The
adjacent vertices have different colors such that c(v) 6= c(u) and c(v) 6= c(w). Since u and
w are not adjacent, it is admissible for c(u) = c(w), but u and w do not necessarily need to
have the same coloring. Notice the entire graph is not properly colored because c(x) = ∅,
but we can clearly see χ(G) = 2 by coloring x with either the α or β color.

The concept of a coloring game was first introduced by Martin Gardner in his Mathematical
Games column in the Scientific American magazine in 1981 [4]. This is where Brams invented
the map-coloring game with two players taking turns to color countries with n colors such
that no countries sharing a border could be the same color. One player’s goal is to have the
map completely colored, while the other’s goal is to the contrary of not having the graph
properly colored with n colors [4]. Not until ten years later, when Bodlaender transferred
the coloring game to graph theory, did this game gain any popularity in mathematics [4].

Definition 1.1 ([1]). The n-coloring game consists of two players, Alice and Bob, alter-
nating turns to properly color vertices in a graph G with n colors. Alice wins if every vertex
is properly colored, otherwise Bob wins when a vertex cannot be properly colored with n
colors. In the n-coloring game, Alice plays first and neither player can skip or pass on their
turn.

Example 1.2. Let us play the coloring game on the graph G as seen Figure 3.

u v w

Figure 3: Graph G

Suppose first Alice colors u with color α as we see in Figure 4.

u v w

Figure 4: Graph G after Alice’s turn
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Then Bob colors vertex w with β as seen in Figure 5.

u v w

Figure 5: Graph G after Bob’s turn

If Alice and Bob are playing the 2-coloring game, then Bob would win because vertex v can
not be colored with α or β. However if Alice and Bob are playing 3-coloring game, then
Alice can color v with γ as seen in Figure 6.

u v w

Figure 6: Graph G after Alice’s turn

The Alice and Bob continue taking turns to properly color vertices. In this case Alice could
eventually win the 3-coloring game because the remaining uncolored vertices can be properly
colored with 3 colors.

While determining whether Alice or Bob wins is an exciting endeavor, we are more interested
in the minimum number of colors needed to properly color the graph in the coloring game.
Similar to the chromatic number, the game chromatic number, denoted as χg(G), is the
least number of colors needed for Alice to have a winning strategy for the coloring game on
a graph G [1]. For example in Figure 3, χg(G) = 3 because regardless of Bob’s moves, Alice
has a winning strategy with 3 colors, but not 2 colors.

It is important to note that the maximum degree and the chromatic number are bounds
for the game chromatic number. The vertex v with maximum degree will have the most
neighbors, so there is a possibility of each neighbor having a unique color including v. Hence
∆(G) + 1 is the upper bound for the game chromatic number. In order for the Alice to have
a winning strategy, she must use at least as many colors needed to properly color a graph
without playing the coloring game. Remember that the chromatic number of a graph is the
minimum number of colors needed to properly color a graph by Brooks’ Theorem. Similarly
Bodlaender proved

χ(G) ≤ χg(G) ≤ ∆(G) + 1

for a graph G [1]. Let us look at an example that meets lower and upper bounds for the
game chromatic number. One example is a complete graph, which has every vertex adjacent
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to all other vertices. In Figure 7, the complete graph has χ(G) = 5. Also, we see ∆(G) = 4,
so the upper bound is also 5. Thus χg(G) = 5 for the graph in Figure 7. Note that all
complete graphs have a game chromatic number equal to the chromatic number.

Figure 7: Complete Graph G

2 Game Chromatic Number on Trees

We now investigate the game chromatic number of a specific class of graphs, known as tree
graphs. To understand trees, we need to define a cycle. A graph G contains a cycle if G
has a path P = x0, x1, . . . , xn such that x1xn is an edge in G. If starting from one vertex we
travel or walk along a path and get back to our starting vertex, then the graph contains a
cycle. Note that graphs can have more than one cycle.

Definition 2.1. Tree graphs are connected simple graphs that do not contain any cycles.

For example, Figure 1 is not a tree because the path w → v → u → w is a cycle in G and
the graph is disconnected. However, Figure 2 and Figure 3 are trees because both are acyclic
and connected simple graphs.

We can also expand the idea of trees to disjoint graphs. A forest is a disconnected graph
such that each connection component is a tree. Continuing with the tree metaphor, we label
the vertices of degree 1 as leaves. All non-leave vertices, known a central vertices of a tree,
have degree at least 2.

2.1 Trunking

By breaking a tree apart as Alice and Bob play, trunking is a tool for proving Alice or Bob
win on a tree. This trunking method was formed in [3], but a similar trunking method has
been used for the coloring game dating back to Faigle [5].

Definition 2.2. A trunk T of graph G is a maximal connected subgraph of G such that
every colored vertex in T is a leaf of T .

The set of all trunks is R(G) with each uncolored vertex in exactly one trunk and each
colored vertex v in deg(v) many trunks. We can define the trunking method iterative as
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Alice and Bob color vertices. Once a vertex u in a trunk T is colored, then the trunk is
divided into n = deg(u) trunks at u. Now we have n − 1 more trunks in R(G) because we
replaced T with n trunks.

Let us run through an example of using the trunking method on graph G. At first the entire
graph G is the trunk because there are no colored leaves.

v

Figure 8: Tree G is the trunk.

u v v

Figure 9: After the vertex v in G is colored we can divide G into two trunks T1 and T1, since
deg(v) = 2.

u

u

u v v

Figure 10: Vertex u is colored in T1, so T1 is now broken into 3 trunks. Thus R(G) has 4
trunks.

In Section 1.2, the n-coloring game is defined by Alice coloring first and neither player can
pass on their turn. However we will now define two variations of the n-coloring game as
designed by Dunn et al. [3].

Definition 2.3. In the n-modified coloring game, denoted as n-MCG, Bob plays first
on a partially colored graph. Then, Alice and Bob alternate properly coloring vertices, but

6



Bob can skip his turn. Alice wins if every vertex is properly colored with n colors, otherwise
Bob wins.

Lemma 2.4. [3] If Alice can win the n-MCG on every trunk in a partially colored forest F ,
she can win the n-coloring game on F .

Lemma 2.5. [3] If T is a trunk with at most one colored vertex and at most 7 vertices, Alice
can win the 3-MCG on T .

The purpose of the modified coloring game is to help prove Alice could win with n colors
as seen in Lemma 2.4. Thus the modified coloring game is instrumental to proving n as the
lower bound of the game chromatic number.

Similarly, [3] designed the expanded coloring games to demonstrate Bob’s winning strategy
with k colors. Therefore the expanded coloring game is helpful with proving n as the lower
bound for the game chromatic number. In the n-expanded coloring game, denoted as
n-ECG, Alice plays first on a partially colored graph. For Alice’s turns she can color a vertex,
add a colored leaf to any vertex, or pass her turn. Otherwise everything in the n-coloring
game applies to the n-ECG variation.

Lemma 2.6. [3] Let F be a partially colored forest and let F ′ be an induced connected
subgraph of F . If Bob can win the 3-ECG on F ′ and every vertex in F ′ does not have a
colored neighbor in F , then Bob can win the 3-coloring game on F .

In particular, these lemmas with trunking method, MCG, and ECG will be helpful in proving
Alice wins, which in turns proves the upper bound of the game chromatic number of a graph.

2.2 Past Results for Trees

As a first result, Bodlaender [1] proved that Alice could always win the 5-coloring game
on any tree. Yet, Bodlaender was never able to find a graph with the game chromatic
number of 5. Thus in [5], the upper bound was improved by proving trees have a game
chromatic number of at most 4. This is a strict upper bound because [3] found trees with
game chromatic number equal to 4. We also know that any connected graph with at least 2
vertices will have a game chromatic number of at least 2. In [3], the conditions for a forest
F to have χg(F ) = 2 are stated in Theorem 2.7.

Theorem 2.7 (Dunn et al. [3]). Let F be a forest with the longest path having length `.
Then χg(F ) = 2 if and only if

• 1 ≤ ` ≤ 2 or

• ` = 3, the number of vertices is odd, and every tree in the forest with a distance 3 is a
path.
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We can also identity the game chromatic number based on the number vertices in a forest. If
F is a forest with n ≤ 13 vertices, then χg(F ) = 3 [3]. However the requirements for whether
a forest or tree having a game chromatic number of 3 or 4 are still unknown according to
[4]. In this paper, we prove results on the differentiation of the game chromatic number of
trees to help answer this open question.

Question: What is the criteria for differentiating between trees with game chromatic num-
ber of 3 and 4? [4]

3 Game Chromatic Number on Caterpillars

Instead of studying the entire class of trees, we will focus one subclass of trees. There are
many classes of connected graphs without cycles, such as lobster graphs, polygraphs, and
leaf powers. In order to help answer a portion of the above question, we will investigate
when the game chromatic number is 3 or 4 in a subclass of trees called caterpillars. A
caterpillar graph, denoted as cat{k1, k2, . . . , kn}, is a tree with n central vertices such that
each central vertex vi has ki leaves. For example, in Figure 11 the caterpillar C contains 8
central vertices, which are circled in red.

Figure 11: Caterpillar C = cat{2, 2, 1, 2, 1, 3, 0, 2}

3.1 Past Results for Caterpillars

The most trivial set of caterpillars are paths, which is Pn = cat{0, 0, 0, . . . , 0} with 1 ≤ n
vertices. The upper bound is χg(Pn) ≤ ∆(Pn) + 1 = 3. Now let’s play the 2-coloring game
on Pn with n ≥ 4 vertices. After Alice’s first turn, Bob can always color a vertex a distance
2 away with a new color. Thus an uncolored vertex is adjacent to two different colors, so a
third color is needed. We can see an example of the 2-coloring game on a path P4 in Figure
12, where v can not be colored with 2 colors. Since Bob can win the 2-coloring game, then
χg(Pn) = 3 for n ≥ 4.

v

Figure 12: Path Pn after Bob’s turn
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Another trivial caterpillar is a star, which is cat{n} with n ≥ 1. In the 2-coloring game,
Alice can play first, so Alice colors the only central vertex with color α. Then all the leaves
can be properly colored with β. Therefore the star has a game chromatic number of 2. In
Figure 13, Alice has just played on the star cat{8}.

Figure 13: Star with 8 leaves after Alice’s first turn

To solve the problem of game chromatic number of caterpillars, Furtado et al used maximum
degree and graphs without vertices of a certain degree as the criteria for identifying the game
chromatic number. Other than the game chromatic number of trivial caterpillar cases, more
general results of the game chromatic number were researched by Furtado et al. Below is
the list the major results in [7] and [6].

• A caterpillar G with less than 4 vertices of degree 4 has χg(G) = 3.

• Any caterpillar G with ∆(G) = 3 has χg(G) ≤ 3.

• A caterpillar G without a vertex of degree 2 has χg(G) = 4 if and only if G has at least
4 vertices with degree 4 or greater.

• A caterpillar G without a vertex of degree 3 has χg(G) = 4 if and only if G has an
induced subgraph of the caterpillar of family Q from [7].

With only 14 vertices G = cat{0, 2, 2, 2, 2, 0} in Figure 14 is the smallest tree, which happens
to be a caterpillar, with game chromatic number of 4. However, a tree with game chromatic
number of 4 does not need to contain G as a subgraph, as we will see in Section 4.

Theorem 3.1. [3] If G is as seen in Figure 14, then Bob can win the 3-ECG on G. Moreover,
G is a minimal example of a tree with χg(G) = 4.

Figure 14: Smallest tree G with χg(G) = 4

The previous results classify multiple caterpillars, yet caterpillars with more than 13 vertices
that contain a vertex of degree 2, degree 3, and at least 4 vertices of at least 4 degree has not
been classified. Thus we created a new subclass of caterpillars, called segmented caterpillars.
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4 Game Chromatic Number on Segmented Caterpil-

lars

To guarantee a caterpillar with a vertex of degree 2, we created a segmented caterpillar.
Then with additional restrictions on the segments, the caterpillar will have a degree 3 and
at least 4 vertices of at least 4 degrees. A segment is a sequence S = {k1, . . . , kn} such
that ki ≥ 1 for 0 ≤ i ≤ n and n ≥ 1. A segmented caterpillar is a caterpillar H =
cat{S1, 0, S2, 0, S3, 0, . . . , 0, Sm} with m segments {S1, S2, . . . , Sm}. Note that this notation
of caterpillars was used in [6] and [7] and we extended the notation for segments. In this
paper, we will work with uniform segmented caterpillars, which occur when segments are
all the same.

In this section, we consider uniform segmented caterpillars with segments of {2}, {2, 2}, or
{2, 2, 2}. Notice in the segmented caterpillar, the first vertex has exactly 2 leaves, so the
graph has a vertex of degree 3. For the game chromatic number of the segmented caterpillar
to be non-trivial by results of Dunn et al. [3] and Furtado et al. [7], we assume the segmented
caterpillar has more than 13 vertices and at least 4 vertices of degree at least 4. The first
case to consider is when each segment is {2}.

4.1 Segments of {2}

Let us investigate uniform segmented caterpillars with segments of {2}. To begin, we need
to consider partially colored trunks that could appear while playing the n-coloring game.
To prove the game chromatic number of all uniform segmented {2} caterpillars is 3 as seen
below in Theorem 4.5, we will to prove in Lemma 4.3 and Lemma 4.4 that Alice can win on
all possible trunks.

In order to gain a better understanding of the criteria for a tree having a game chromatic
number of 3 and 4, the reader should be knowledgeable of dangerous vertices. A dangerous
vertex v has at most as many uncolored adjacent vertices as legal colors available to color v
in the n-coloring game[3]. Note a dangerous vertex can have colored neighbors or no colored
neighbors. In an n-coloring game, a very dangerous vertex has n − 1 uniquely colored
neighbors and at least one uncolored neighbor that can be properly colored with the nth

color. We notice that all very dangerous vertices are dangerous vertices, but not vice versa.
To see the difference between dangerous vertices and very dangerous vertices, let us look at
Figure 15, which contains three graphs in the 3-coloring game. Since u1 has 2 possible colors
in the 3-coloring game and 2 uncolored neighbors, then u1 is a dangerous vertex. The vertex
u2 is a very dangerous vertex because it has 2 uniquely colored neighbors and an uncolored
neighbor.
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u1 u2 u3u4

Figure 15: In the 3-coloring game, u1, u2, and u3 are dangerous vertices, u2 is a very
dangerous vertex, and u4 can not be colored with 3-coloring game. Thus Alice wants to
avoid 3 unique colored leaf adjacent to one vertex.

In order to prove more general statements about the game chromatic number of trees, we
utilize the concepts of dangerous and very dangerous vertices.

Lemma 4.1. If a graph G does not have any dangerous vertices or G has exactly one
dangerous vertex with the same colored neighbors, then Alice wins the 3-MCG on G.

Proof. Let G be a graph where Alice and Bob are playing the 3-modified coloring game.
Thus we will prove that Alice wins for each move Bob makes in his turn. Since Bob and
Alice are playing the 3-MCG, Bob plays first. Trivially, if G has no dangerous vertices, then
Bob can color any vertex because every vertex in G has more legal colors available than
uncolored adjacent vertices. Thus every vertex can be properly colored, so Alice will win the
3-MCG on G.

Assume G has exactly one dangerous vertex v with the colored neighbors having the color
α. If Bob colors v, Alice colors any vertex. If Bob colors an adjacent vertex to v with α,
then Alice colors v with β. If Bob passes or colors a vertex not adjacent to v, then Alice
colors v. Thus after Bob’s turn, Alice can eliminate any dangerous vertices in T . Therefore
Alice will win the 3-MCG on G because every vertex can be properly colored.

Lemma 4.2. If the graph G has at least two very dangerous vertices that are not adjacent,
then Bob wins the 3-coloring game on G.

Proof. Suppose a graph G has two non-adjacent very dangerous vertices v and u. In the
3-coloring game, Alice plays first. If Alice does not color u, then Bob colors a leaf of u with
a new third color. Thus u cannot be colored in the 3-coloring game, so Bob wins.

If Alice colors the very dangerous vertex u, then Bob colors a leaf of v with a new third
color. Thus v cannot be colored in the 3-coloring game, so Bob wins.

11



α α or β

Figure 16: Caterpillar H1 = cat{0, 0, S1, 0S2, 0, S3, 0, . . . , 0, Sn, 0} with uncolored Si = {2}
for 1 < i < n.

α α or β

Figure 17: Caterpillar H2 = cat{0, 0, S1, 0S2, 0, S3, 0, . . . , 0, Sm, 0, 0} with uncolored Sj = {2}
for 1 < j < m.

Lemma 4.3. If a partially colored segmented caterpillar G is H1 as seen in Figure 16 or H2

as seen in Figure 17, then Alice wins the 3-MCG on G.

Proof. Through induction on the number of dangerous vertices, we will prove that Alice wins
the 3-MCG on G, which is the partially colored graph H1 as seen in Figure 16 or H2 as seen
in Figure 17. If G has only one dangerous vertex, then Alice wins with 3 colors by Lemma
4.1.

Assume Alice wins the 3-MCG on H1 and H2 with each having n dangerous vertices. We will
prove Alice wins the 3-MCG for the partially colored graph H1 and H2 with n+ 1 dangerous
vertices.

First, let G have the structure of H1 with n+ 1 dangerous vertices. Since we are playing the
3-MCG, Bob plays first by either passing, coloring a dangerous vertex, degree 2 vertex, or a
leaf.

• If Bob passes on his turn, then Alice colors the dangerous vertex of Sn+1. Thus G
has the structure of H2 with n dangerous vertices and other trunks with no dangerous
vertices.

• If Bob colors a dangerous vertex, then Alice colors any dangerous vertex. Thus G has
one or two trunk(s) of the form H2, possibly one trunk of the form H1 with each trunk
having at the most n dangerous vertices, and other trunks with no dangerous vertices.

• If Bob colors a vertex of degree 2, then Alice colors the dangerous vertex of Sn+1. Thus
G has one or two trunk(s) of H1 each with at most n dangerous vertices and other
trunks with no dangerous vertices.
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• If Bob colors a leaf x, then Alice colors the dangerous vertex adjacent to x. Now G
has one trunk of H2 with at most n dangerous vertices, possibly one trunk of H1 with
at most n dangerous vertices, and other trunks with no dangerous vertices.

Let G have the structure of H2 with n + 1 dangerous vertices. Since we are playing the
3-MCG, Bob plays first.

• If Bob passes or colors a dangerous vertex, then Alice colors any dangerous vertex. Thus
G has at most three trunks with the structure of H2 each with at most n dangerous
vertices and other trunks with no dangerous vertices.

• If Bob colors a vertex x of degree 2, then Alice colors either dangerous vertex adjacent
to x. Thus G′ has at most one trunk of H1 with at most n dangerous vertices, one
trunk of H2 with at most n dangerous vertices, and other trunks with no dangerous
vertices.

• If Bob colors a leaf u, then Alice colors the dangerous vertex adjacent to u. Thus
G has at most two H2 with at most n dangerous vertices, and other trunks with no
dangerous vertices.

Alice can win the 3-MCG on any trunks without any dangerous vertices by Lemma 4.1.
Thus we only focus on the trunks with more than one dangerous vertex. By the inductive
hypothesis and Lemma 2.4, Alice wins the 3-MCG on G.

α

Figure 18: Segmented caterpillar H = cat{0, 0, S1, 0, S2, 0, S3, 0, . . . , 0, Sn} with uncolored
Si = {2} for 1 < i ≤ n.

Lemma 4.4. If H is the partially colored segmented caterpillar as seen in Figure 18, then
Alice wins the 3-MCG on H.

Proof. Let H be the partially colored segmented caterpillar as seen in Figure 18. If H has
no dangerous vertices, then Alice wins the 3-MCG by Lemma 4.1.

Assume Alice wins the 3-MCG on H with n dangerous vertices. We will prove Alice then
wins the 3-MCG on H ′ with n+1 dangerous vertices. Since we are playing the 3-MCG, then
Bob plays first by passing, coloring a dangerous vertex, a vertex of degree 2, or a leaf.
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• If Bob passes, then Alice colors the dangerous vertex of S2. Thus H ′ has a trunk of H
with n dangerous vertices and other trunks with no dangerous vertices.

• If Bob colors a dangerous vertex, then Alice colors a dangerous vertex. Thus H ′ has
a trunk of H with at most n vertices, two trunks of H2 as seen Figure 17, and other
trunks with no dangerous vertices.

• If Bob colors a vertex of degree 2, then Alice colors the adjacent dangerous vertex closer
in distance to Sn+1. Thus H ′ has a trunk of H with n dangerous vertices, possibly a
trunk of H1 as seen Figure 16, and other trunks with no dangerous vertices.

• If Bob colors a leaf, then Alice colors the adjacent dangerous vertex. Thus H ′ has
possibly a trunk of H with at most n dangerous vertices, a trunk of H1 as seen in
Figure 16, and other trunks with no dangerous vertices.

By Lemma 4.1, Alice can win the 3-MCG on any trunks without any dangerous vertices.
Thus we only focus on the trunks with more than one dangerous vertex. By the inductive
hypothesis and Lemma 4.3, Alice wins the 3-MCG on each trunk in H ′. Thus by Lemma
2.4 Alice wins the 3-MCG on H ′ with n+ 1 dangerous vertices.

Figure 19: Segmented {2} Caterpillar

Theorem 4.5. If G is a uniform segmented {2} caterpillar as seen in Figure 19, then
χg(G) = 3.

Proof. Let Alice and Bob play the 3-coloring game on G = cat{S1, 0, S2, 0, . . . , 0, Sn} with
Si = {2} for 1 ≥ i ≥ n. Alice goes first by coloring one of the vertices of degree 3. Alice can
win the 3-MCG of each trunk by Lemma 4.4 and Lemma 4.1. Thus Alice wins the 3-coloring
game by Lemma 2.4.

Alice can not win the 2-coloring game by Theorem 2.7. Therefore, Alice has a winning
strategy with 3 colors, so χg(G) = 3.

The uniform segmented {2} caterpillar has a game chromatic number of 3, which is non-
trivial because the caterpillar contains a degree 3 vertex, degree 2 vertex, more than 4 vertices
with degree at least 4, and more than 13 vertices. We have classified uniform segmented
{2} caterpillars, so the next extension is the game chromatic number of uniform segmented
caterpillars with segments of {2, 2}.
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4.2 Segments of {2, 2}

To prove that a uniform segmented {2, 2} caterpillar has a game chromatic number of 4, we
will use a partially colored trunk that [3] proved Bob to win the 3-extended coloring game.

Lemma 4.6 (Dunn et al. [3]). Let G be the partially colored tree shown in Figure 20 that
may have an additional leaf colored β not shown in the figure. Then Bob can win the 3-ECG
on G.

α α

Figure 20: By Lemma 4.6, Bob wins the 3-coloring game.

Lemma 4.7. If a segmented caterpillar G contains two disjoint subgraphs that are each
cat{0, 2, 2, 0, 2, 2, 0}, then χg(G) = 4.

Proof. Let G be a segmented caterpillar such that G contains at least two disjoint subgraphs
cat{0, 2, 2, 0, 2, 2, 0}, called H1 and H2. Alice colors any vertex x with α. Since H1∩H2 = ∅,
then x is either in H1 or H2, but not both. Without loss of generality, assume x /∈ H1, so
v ∈ V (H1) is an uncolored vertex of degree 2 as seen in Figure 21. Bob colors v with color
β. Now H1 has two isomorphic subgraphs H ′1 = H ′′1 = cat{0, 1, 1, 0} with H ′1 ∩ H ′′1 = v.
Without loss of generality, Alice colors a vertex y /∈ H ′1, so Bob colors the vertex without
leaves in H ′1 with color β. By Lemma 4.6, Bob can win 3-ECG on H ′1. By Lemma 2.6, Bob
wins the 3-coloring game on G. Since χg(G) ≤ 4 and χg(G) > 3, then χg(G) = 4.

v

Figure 21: Subgraph H1 = H ′1 ∪H ′′1

Lemma 4.8. If a segmented caterpillar G contains a subgraph equal to one cat{0, 2, 2, 0, 2, 2, 0, 2, 2, 0},
then χg(G) = 4.

Proof. Let H be the subgraph cat{0, 2, 2, 0, 2, 2, 0, 2, 2, 0} as seen in Figure 22. We will prove
Bob can win on this subgraph for every possible turn Alice takes by proving Bob wins the
3-ECG.
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Case 1: Alice passes her first turn. Bob colors vertex y with α. If Alice colors a vertex in
segment 2, then Bob colors z with α. Otherwise, if Alice does not color a vertex in segment
2, Bob colors x with α. Thus Bob has created the subgraph in Figure 20.

Case 2: Without loss of generality between coloring in segments 1 and 3, Alice colors a
vertex in segment 1 with α. Bob colors y with β. If Alice colors z or a vertex in segment
3, then Bob colors x with β. Otherwise if Alice passes, colors x, w, a vertex in segment 1,
or a vertex in segment 2, then Bob colors z with β. Thus Bob has created the subgraph in
Figure 20.

Case 3: Without loss of generality between coloring the vertex adjacent to x or to y in
segment 2, Alice colors with α a dangerous vertex that is adjacent to x or a leaf of the
dangerous vertex that is adjacent to y. With β, Bob colors y. If Alice colors the very
dangerous vertex, then Bob colors z with β. Thus Bob has created the subgraph in Figure
20. Otherwise if Alice does not color the very dangerous vertex, then Bob colors the leaf of
the very dangerous vertex with γ. Thus, the very dangerous vertex would need a 4th color.

Case 4: Alice colors a vertex of degree 2 with α. Bob then colors the vertex of degree 2 that
is distance 3 away. Thus Bob has created the subgraph in Figure 20.

Since in every case Bob has created the subgraph in Figure 20 or created a vertex that
requires a 4th color to be properly colored, Bob wins the 3-ECG on the subgraph H. Thus
by Lemma 2.6, Bob wins the 3-coloring game. Since χg(G) ≤ 4 and χg(G) > 3, then
χg(G) = 4.

w x y z

Segment 1 Segment 2 Segment 3

Figure 22: Caterpillar H = cat{0, S1, 0, S2, 0, S3, 0} with S1 = S2 = S3 = {2, 2}

Lemma 4.7 and Lemma 4.8 can be extended to non-uniform segmented caterpillars, but
we classify the uniform segmented {2, 2} caterpillars that have two disjoint subgraphs of
cat{0, 2, 2, 0, 2, 2, 0} or a subgraph of cat{0, 2, 2, 0, 2, 2, 0, 2, 2, 0}.

Lemma 4.9. If a graph G as seen in Figure 23, then Alice wins the 3-MCG on G.

16



u v w

α

Figure 23: Partially colored caterpillar G = cat{2, 2, 0, 2} such that u can have more uncol-
ored leaves, w can have more uncolored or α colored leaves, or w is colored.

Proof. Suppose Alice and Bob are playing the 3-MCG on a caterpillar graph G as seen in
Figure 23.

Case 1: If Bob colors a dangerous vertex v, then there are two trunks with vertex v beginning
in both trunks. Since each trunk contains exactly one dangerous vertex each, Alice will win
the 3-MCG on each trunk by Lemma 4.1.

Case 2: If Bob colors a leaf of u with α, then Alice colors v with α. Since there are two
trunks with exactly one dangerous vertex each, then Alice wins the 3-MCG on each trunk
by Lemma 4.1.

Case 3: If w is uncolored and Bob colors a vertex adjacent to w, then Alice colors w with β
or γ.

• If Bob colors a vertex adjacent to v with α, Alice colors v with β or γ. With only one
dangerous vertex u, Alice will win the 3-MCG by Lemma 4.1.

• If Bob does not color a vertex adjacent to v, then Alice colors u. Alice wins the 3-MCG
on T by Lemma 4.1 as only v is uncolored with a single colored neighbor.

Case 4: If Bob does not color anything mentioned in Cases 1-3, Alice colors v to create two
trunks. Since two trunks each having only one dangerous vertex, then Alice wins the 3-MCG
on each trunk by Lemma 4.1.

Alice wins on each trunk, so by Lemma 2.4 Alice wins on G.

Lemma 4.10. If G is the partially colored caterpillar graph as seen in Figure 24, then Alice
can win the 3-MCG on G.

x1 x2 x3 x4 x5 x6

Figure 24: Partially colored caterpillar G = cat{0, 0, 2, 2, 0, 2, 2}.
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Proof. Let G be the partially colored caterpillar graph as seen in Figure 24. Bob can play
first.

• If Bob colors x4 or leaf of x3 with β, then Alice colors x2 with β, so G has two trunks.
By Lemma 4.9 and Lemma 4.1, Alice wins on both trunks.

• If Bob colors x5 or x6 with β, then Alice colors x3 with β, so G has 3 trunks each with
only one dangerous vertex. By Lemma 4.9, Alice wins on each trunk.

• If Bob colors a leaf of x5 with β, then Alice colors x6 with β, so G has one trunk, which
Alice wins on by Lemma 4.1.

• If Bob colors a leaf of x6 with β, then Alice colors x6 with γ, so G has one trunk, which
Alice wins on by Lemma 4.1.

• If Bob colors x2, so G has 2 trunks, then Alice can win on by Lemma 4.9 and Lemma
4.1.

• If Bob colors a vertex not mentioned in the above cases or Bob passes, then Alice colors
x2, so G has 2 trunks. By Lemma 4.9 and Lemma 4.1, Alice wins on both trunks.

Alice wins on every trunk of G. Thus by Lemma 2.4, Alice wins the 3-MCG on G and
χg(G) > 2 by Theorem 2.7.

Theorem 4.11. If a uniform segmented caterpillar G has less than 5 segments of {2, 2},
then χg(G) = 3.

Proof. Let G be a uniform segmented caterpillar of less than 5 segments of {2, 2}.

• If G has 2, 3, or 4 segments, Alice colors the dangerous vertex that is distance 4 from
one of the vertices of degree 3. Thus G has a trunk defined by Figure 24, possibly
a trunk defined by Figure 23, and two trivial trunks without any dangerous vertices.
Thus by Lemma 4.9 and Lemma 4.10, Alice wins the 3-MCG on each trunk. By Lemma
2.4, Alice wins the 3-coloring game on G.

• If G has 1 segment, then Alice colors a dangerous vertex. Thus G has only one
dangerous vertex, so Alice wins the 3-coloring game by Lemma 4.1.

Therefore the χg(G) = 3, since Alice is able to win the 3-coloring game on G.

Theorem 4.12. A uniform segmented {2, 2} caterpillar G has χg(G) = 4 if and only if G
has at least 5 segments.
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Proof. Let G be a uniform segmented {2, 2} caterpillar having at least 5 segments of {2, 2}.
Thus G will have the subgraph cat{0, 2, 2, 0, 2, 2, 0, 2, 2, 0} as defined by Figure 22. Therefore
χg(G) = 4.

Suppose G has χg(G) = 4 and has less than 5 segments. By Theorem 4.11, G has χg(G) = 3
because G has less than 5 segments of {2, 2}. This is a contradiction. Therefore G must
have at least 5 segments.

Figure 25: Segmented Caterpillar with 5 segments of {2, 2}.

4.3 Segments of {2, 2, 2}

Similar to uniform segmented {2, 2} caterpillars, the game chromatic number of uniform
{2, 2, 2} segmented caterpillars stems from Lemma 4.7.

x1 a b c x3
x1

Figure 26: χg(G) = 4

Lemma 4.13. If G is a uniform segmented {2, 2, 2} caterpillar with 3 segments as seen in
Figure 26, then Bob wins the 3-ECG on G.

Proof. Let G be a uniform segmented {2, 2, 2} caterpillar with 3 segments as seen in Figure
26. In the ECG Alice is the first to play and Alice can skip.

Case 1: If Alice colors a or a leaf of b with α, then Bob colors x2 with α. Thus G contains
the subgraph as defined by Figure 20. By Lemma 4.6, Bob wins the 3-ECG.

Case 2: If Alice colors b with α, then Bob colors x2 with β.

• If Alice colors c with γ, then Bob colors x3. Thus G contains the subgraph as defined
by Figure 20. By Lemma 4.6, Bob wins the 3-ECG.

19



• If Alice does not color c, then Bob colors the leaf of c with γ. Thus c would require a
4th color. Thus Bob wins the 3-ECG on G.

Case 3: If Alice colors c with α, then Bob colors x1. Thus G contains the subgraph as
defined by Figure 20. By Lemma 4.6, Bob wins the 3-ECG.

Case 4: If Alice does not color the vertices mentioned in Cases 1-3, then G contains
cat{0, 2, 2, 0, 2, 2, 0} and it is Bob’s turn. As shown in the proof of Lemma 4.7, Bob will
win the 3-ECG.

α x1 x2 x3 x4

Figure 27: G = cat{0, 0, 2, 2, 2}

Lemma 4.14. Alice wins the 3-MCG on G = cat{0, 0, 2, 2, 2} as seen in Figure 27.

Proof. Let G = cat{0, 0, 2, 2, 2} as seen in Figure 27. Bob plays first. If Bob colors x2, then
Alice colors x3. If Bob colors x4 or leaf of x3 with α, then Alice colors x2 with α. If Bob
colors a leaf of x4 with α, then Alice colors x3 with β. If Bob colors anything not mentioned
or passes, Alice colors x2. Alice wins the 3-MCG on the each trunk by Lemma 2.5 or Lemma
4.1.

x

Figure 28: Uniform segmented caterpillar G

Lemma 4.15. If G is a uniform segmented {2, 2, 2} caterpillar with 1 or 2 segments, then
χg(G) = 3.

Proof. If G has 2 segments, then Alice plays first and colors x as seen in Figure 28. If G
has 1 segment, then Alice colors either vertex of degree 3. Thus Alice wins the 3-MCG
on each trunk by Lemma 2.5 and Lemma 4.14. Since Alice wins the 3-MCG on G, then
χg(G) = 3.

Theorem 4.16. A uniform segmented {2, 2, 2} caterpillar G has χg(G) = 4 if and only if
G has at least 3 segments.
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Proof. Let G be a uniform segmented {2, 2, 2} caterpillar with at least 3 segments. If G
has exactly 3 segments, then Bob wins the 3-ECG by Lemma 4.13. If G has more than 3
segments, then Bob wins the 3-ECG by Lemma 4.7. Since Bob wins the 3-ECG, then by
Lemma 2.6, χg(G) = 4.

Suppose G has χg(G) = 4 and has less than 3 segments. By Lemma 4.15, G has χg(G) = 3
because G has less than 3 segments of {2, 2, 2}. This is a contradiction. Therefore G must
have at least 3 segments.

The next largest uniformed segmented caterpillar has segments of cat = {2, 2, 2, 2}. Any
segments with more central vertices than cat = {2, 2, 2, 2} would have a game chromatic
number of 4 for the same reasoning.

5 Conclusion

Posed with the question of identifying the difference in trees with game chromatic number
3 or 4, we focus on classifying the game chromatic number of a new subclass of caterpillars.
We were able to find the criteria for non-trivial uniform segmented caterpillars. Our next
questions and directions for investigation include:

• What is the game chromatic number of a forest such that each connected component
is a segmented caterpillar with segments of {2}?

• What is the criteria of non-uniform segmented caterpillars to have game chromatic
number of 3 or 4?

• Can we extend the results of segmented caterpillars with segments of {2}, {2, 2},
{2, 2, 2} to lobster graphs, which adds a leaf to every leaf in the caterpillar?
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