
University of Mary Washington University of Mary Washington

Eagle Scholar Eagle Scholar

Student Research Submissions

Spring 5-7-2021

Simulations of an Attack on RSA Simulations of an Attack on RSA

Makayla Ferrell

Follow this and additional works at: https://scholar.umw.edu/student_research

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Ferrell, Makayla, "Simulations of an Attack on RSA" (2021). Student Research Submissions. 388.
https://scholar.umw.edu/student_research/388

This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion
in Student Research Submissions by an authorized administrator of Eagle Scholar. For more information, please
contact archives@umw.edu.

https://scholar.umw.edu/
https://scholar.umw.edu/student_research
https://scholar.umw.edu/student_research?utm_source=scholar.umw.edu%2Fstudent_research%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholar.umw.edu%2Fstudent_research%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research/388?utm_source=scholar.umw.edu%2Fstudent_research%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:archives@umw.edu

Simulations of an Attack on RSA

Makayla Ferrell

submitted in partial fulfillment of the requirements for Honors in
Mathematics at the University of Mary Washington

Fredericksburg, Virginia

April 2021

This thesis by Makayla Ferrell is accepted in its present form as satisfying the thesis requirement
for Honors in Mathematics.

Date Approved

Randall Helmstutler, Ph.D.
thesis advisor

Debra Hydorn, Ph.D.
committee member

Larry Lehman, Ph.D.
committee member

Contents

1 Introduction 1
1.1 RSA cryptosystem . 1
1.2 Diffie-Hellman Key Exchange and ElGamal cryptosystem 2
1.3 Shanks’ baby-step/giant-step . 2

2 BSGS Analysis 4
2.1 BSGS Complexity . 4
2.2 Prime versus Semi-prime Moduli . 4
2.3 Multiple Solutions to the DLP . 5

3 Alternative BSGS Usage 5
3.1 Example . 5
3.2 Algorithm . 7
3.3 Analysis . 8

A Test Cases 10

B RSA Proof 14

References 16

Abstract

We introduce a variation of Shanks’ baby-step/giant-step (BSGS) to carry out a chosen plaintext
attack on RSA. The original usage of BSGS is to find a solution to the discrete log problem.
Although BSGS is guaranteed to find a solution, it is not guaranteed to find the matching RSA
private key. Our variation of BSGS finds the matching private key d by using the order of the
plaintext message to generate a set of solutions. We then use the length of this set to determine
the most likely candidate for φ(n). We use a large data set to test the efficiency and accuracy
of our variation.

1 Introduction

1.1 RSA cryptosystem

RSA is a public-key cryptosystem that is widely used for secure data transmission that partially
relies on the Discrete Log Problem (DLP) [1]. In this system each user has a public key (n, e) for
encryption, a private key (d) for decryption, and all calculations are carried out modulo n. When a
user wants to send an encrypted message, they encrypt the message with the recipient’s public key
using c = me mod n, where c is the ciphertext and m is the message. Only the recipient, with their
matching private key, can decrypt and view this message with m = cd mod n. To better explain
this, let’s walk through an example.

First, we need to generate a set of keys for Alice. The first step to generate a key is to compute n,
which is a product of two distinct prime numbers, p and q. In a round of encryption and decryption,
all calculations are carried out mod n = pq. This thesis assumes knowledge of modular arithmetic
and basic group theory. For this example, we will use p = 5 and q = 11, thus n = 55. The next
step is to compute φ(n), where φ(n) is the Euler totient function. Since n factors as pq, φ(n) is
calculated by φ(n) = (p− 1)(q− 1). In our case, φ(n) = (5− 1)(11− 1) = 40. We must now choose
any integer e that satisfies gcd(e, φ(n)) = 1. For simplicity, we will choose the first e that satisfies
this, which is e = 3. Note that gcd(3, 40) is in fact 1. Alice can now publish her public key (55,3)
for others to use when sending her an encrypted message.

However, for Alice to decrypt the messages sent to her, she will need to find her private key
using d = e−1 mod φ(n). In our example, d = 3−1 = 27 mod 40. Alice will keep d = 27 a secret
so that she is the only one who can decrypt messages encrypted with her public key. This is the
standard formulation for RSA. The proof is included in Appendix B.

Now let’s look at how to send encrypted messages in RSA. Let’s pretend Bob wants to send
Alice a message. Bob obtains Alice’s public key (55,3). He can select any message m ∈ Z55. Bob
chooses m = 24 to send to Alice. To encrypt his message, he uses c = 243 = 19 mod 55. Bob now
sends the encrypted message 19 to Alice.

Now we can look at how to decrypt messages. When Alice receives the message she uses her
private key and the following equation to decrypt: m = cd mod n. Thus, m = 1927 = 24 mod 55.
Notice that Alice was able to recover the message that Bob sent using only the private key, which
only she possesses.

RSA relies on the Integer Factorization Problem and the Discrete Log Problem for its security.
However, we will only be focusing on the Discrete Log Problem, which stops an attacker from using
a chosen plaintext attack to discover the private key d. For example, suppose an attacker knows
only the public key. In a chosen plaintext attack, the attacker will chose a message m and encrypt it
with this public key, producing the ciphertext c. The attacker will then try to solve the decryption

1

formula cd = m mod n for d. However, this decryption formula is a Discrete Log Problem, meaning
it holds the form gx = h mod n, so the attacker cannot recover d. Thus, RSA is protected from a
chosen plaintext attack.

1.2 Diffie-Hellman Key Exchange and ElGamal cryptosystem

Another protocol that relies on the Discrete Log Problem is the ElGamal cryptosystem that uses
Diffie-Hellman Key Exchange to generate keys. It is important to note that the Diffie-Hellman
Key Exchange (DHKE) protocol is not an encryption system. DHKE is mostly used to securely
exchange cryptographic keys over a public channel [1]. Instead of users trying to send encrypted
messages, Alice and Bob use DHKE to agree on a common key to use for the ElGamal encryption
system.

Let’s walk through how to use DHKE to generate a key. The first step is for Bob and Alice to
agree on a prime p and a fixed element g ∈ Zp. The fixed element g must be primitive, meaning
it is a generator of the group of units Z∗

p to ensure the security of DHKE. Both p and g are made
public. We will use p = 103 and g = 5. Next, is the private portion of DHKE. Alice chooses an
x such that 1 ≤ x ≤ p − 1, then computes A = gx mod p. Let’s say Alice chooses x = 9, then
A = 59 = 39 mod 103. Next, we will do the same for Bob. Bob chooses a y such that 1 ≤ y ≤ p−1,
then computes B = gy mod p. Bob will choose y = 12, making B = 512 = 34 mod 103. Although
they keep x and y secret, Bob and Alice exchange A and B. Alice will now compute her key using
the following equation: kAlice = Bx = 129 = 72 mod 103. The key for Alice is 72. Bob will compute
his key using the following equation: kBob = Ay = 3912 = 72 mod 103. Note that Bob’s key is also
72. They have now used DHKE to create a shared key.

Although DHKE cannot be used for encryption, it can be used as the first step in the ElGamal
cryptosystem. In the ElGamal cryptosystem each user has their own individual key, just like in
RSA. Alice’s public key is (p, g, A). In our example, Alice would publish (103, 5, 39). Her private
decryption key is x. Recall that for Alice, x = 9.

Let’s suppose Bob wants to send a message to Alice. Suppose he chooses a message m ∈ Zp,
he chooses m = 70. To encrypt, Bob uses c = αm, where α is the shared DHKE key we computed
above (α = Ay = Bx mod p). Thus, the ciphertext is c = αm = 72 · 70 = 96. Bob sends
(B, c) = (34, 96) to Alice. Alice will now decrypt by computing m = α−1c = 72−1 · 96 = 70, where
α is the DHKE key shared between Alice and Bob. Alice has now successfully decrypted Bob’s
message. Similarly to RSA, ElGamal is secure because the public information is not enough to
solve gx = A for the private key x, which is a Discrete Log Problem.

1.3 Shanks’ baby-step/giant-step

The security of ElGamal and RSA both rely on the Discrete Log Problem (DLP). The Discrete Log
Problem can be generically stated with a modulus n and all calculations occurring in Zn, where we
have two fixed elements g, h ∈ Zn, and an unknown integer x satisfying

gx = h mod n.

The goal is to solve this expression for x, the private key, much quicker than brute force, which is
trying every possible solution. Although the DLP may look unfamiliar in generic terms, we have
already seen it twice: in RSA, where cd = m mod n and in DHKE/ElGamal where gx = A mod p.
The Discrete Log Problem is considered very difficult to solve since there is not a known algorithm
considerably faster than brute force that will always produce a solution. However, when certain

2

hypotheses are met, Shanks’ baby-step/giant-step (BSGS) algorithm can find a solution to the DLP
faster than trying every solution [1].

To better understand Shanks’ baby-step/giant-step, we will first walk through the algorithm
and then show an example with a small modulus. Suppose we wish to solve for x in gx = h mod n.
The first step is to set N = ord(g). As a reminder, the order of an element a is the smallest positive
integer m with am = e, where G is a finite group and a ∈ G. The next step in BSGS is to set
m = 1 + b

√
Nc. Now we create List B and List G. List B consists of terms gi, while List G consists

of terms hg−im. In these lists, i = 0, 1, 2, ...,m.

i 0 1 2 ... m

List B 1 g g2 ... gm

List G h hg−m hg−2m ... hg−m
2

Once we have created the lists, we search for a collision, which is just a match between both lists.
Due to the way that N and m are computed, we are guaranteed to find a collision between the
lists. In this case, a collision is where gi = hg−jm. After discovering the collision, the solution can
be found using x = i+ jm, where i is the index of the collision in List B and j is the index of the
collision in List G. We have now found x, the private key, and solved this particular DLP. Let’s show
that x is correct. If we substitute x = i+ jm into gx, we get gx = gi+jm = gigjm = hg−jmgjm = h.
Thus, the solution is correct.

To better illustrate this, let’s use BSGS on our ElGamal example from earlier. Recall that for
Alice, g = 5, A = 39, and p = 103. The DLP for this problem is

5x = 39 mod 103.

To match the notation in this section, we will use generic notation where g = 5, h = 39, and
n = 103. To solve for Alice’s private key x, we set N = ord(g) = 102. Next, we set m =
1 + b

√
Nc = 1 + b

√
102c = 11. Now we can generate two lists. List B starts with 1, then g, and

each subsequent term is multiplied by g mod n. For our example, list B starts with 1, then g = 5,
and the next term is g2 = 25. The rest of the list will be generated by multiplying by g. List G
starts with h, then hg−m, and each subsequent term is multiplied by g−m mod n. The first three
terms of list G are h = 39, hg−m = 33, and hg−2m = 20. The lists are continued below.

i 0 1 2 3 4 5 6 7 8 9

List B 1 5 25 22 7 35 72 51 49 39
List G 39 33 20 9 71 68 10 56 87

Notice that there is a collision between the lists so we do not have to finish both lists to i = 11.
The collision (39) is at i = 9 for list B and j = 0 for list G. We can now compute x = i + jm =
9 + 0(11) = 9. This is Alice’s private key that was supposed to be secure and secret. We can now
decrypt all messages sent to Alice. We can even take it a step further and compute the secret key
Bob and Alice made. Bob’s public B = 12 and we now know x = 9, so the key is Bx = 129 = 72.
To show this solution works, let’s go back to the original DLP. As a reminder, the original DLP
was 5x = 39 mod 103. We can plug in x = 72 and get 572 = 39 mod 103. Thus, we have used BSGS
to find a solution to this DLP.

Now that we understand Shanks’ baby-step/giant-step (BSGS) algorithm, there is a clear con-
tradiction. RSA is protected from a chosen plaintext attack by a DLP, and similarly the security
of DHKE and ElGamal relies on a DLP. Hoewver, BSGS appears to solve discrete log problems.
Can BSGS be used to defeat these systems?

3

2 BSGS Analysis

2.1 BSGS Complexity

Shanks’ baby-step/giant-step (BSGS) does find a solution to the DLP, but how efficient is this
algorithm in finding a solution? We define efficiency of an algorithm based on time, memory, and
its relation to brute force. In the BSGS algorithm, the first step is to compute N = ord(g), where
g is the base term in our DLP. In terms of efficiency, BSGS only requires 2

√
N tries to guarantee

a solution is found, as opposed to trying every possible solution. However, BSGS is not the most
efficient in terms of time or memory. Recall that in BSGS we make two lists that could be of length
m, where m = 1 + b

√
Nc. The memory of storing these two lists and doing the calculations to

produce these lists with a 2048-bit moduli is exhaustive. Additionally, to generate the lists used in
BSGS, we multiply each subsequent term by g in List B and by g−m in List G. All calculations are
done in modulus n which is time exhaustive with such large moduli. It is due to this complexity
that BSGS is not seen as an efficient solution to solving discrete log problems.

2.2 Prime versus Semi-prime Moduli

In order to highlight a key aspect of BSGS, we will follow two examples. The first example uses
n = 31, g = 3, h = 5. The resulting DLP is 3x = 5 mod 31. The matching decryption key and
expected solution for this problem is x = 20. Let’s use BSGS to get that solution. First, we find
N and m, and in doing so we get

N = ord(3) = 30
m = 1 + b

√
31c = 6

Next, we produce the following table to find a collision.

i 0 1 2 3 4 5 6

List B 1 3 9 27 19 26 16
List G 5 10 20 9 18 5 10

The collision occurs at i = 2, j = 3. Thus, x = 2 + 3(6) = 20. Notice we were able to use BSGS to
get the intended solution to the DLP.

Next, let’s use the example from the RSA section, where n = 55. We will use h = 53 and g = 47
The resulting DLP is 47x = 53 mod 55. We will use BSGS to try to find the private key x. From
the earlier section, we know x = 27. To start, we find N and m, and in doing so we get

N = ord(47) = 20
m = 1 + b

√
20c = 5

Next we produce the following table to find a collision.

i 0 1 2 3 4 5

List B 1 47 9 38 26 12
List G 53 9 42 31 53 9

The collision occurs at i = 2, j = 1. Thus, x = 2 + 1(5) = 7. Notice our solution x is not 27.
However, this x does does serve as a valid decryption exponent for all messages. Let’s plug x = 7
into the DLP. That produces 477 mod 55 which equals 53. Thus, x = 7 is a solution. This is an
important finding: BSGS does not find the solution but a solution. The solution BSGS finds will
solve the DLP but will not always be the matching private key.

4

The key difference in the two examples are the moduli, n. In the first example, n = 31 is a
prime number. In the second example, n = 55 is a semi-prime, meaning it is a product of two
prime numbers. When the modulus is a semi-prime, BSGS will find a solution that decrypts but
is not always the private key. This is because, generally, there are multiple solutions to an RSA
DLP. In the next section, we will explore this finding.

2.3 Multiple Solutions to the DLP

In the last section, we discovered that there exists more than one solution to the DLP and that
BSGS finds only one such solution. Let’s look at our RSA example again. In this example, n = 55
and the DLP was 47x = 53 mod 55. In the previous section we ran BSGS on this problem and
stopped the lists after the first collision. If we continue to generate the lists for BSGS until the
next collision, we can see that BSGS will get us to another solution to this DLP.

i 0 1 2 3 4 5 6 7 8 9 10 11 12

List B 1 47 9 38 26 12 14 53 16 37 34 3 31
List G 53 9 42 31 53 9 42 31 53 9 42 31

Notice that the second collision is at i = 7, j = 4. For this collision, x = 7 + 4(5) = 27. This
is also a solution to the DLP. Notice that x = 27 decrypts, 4727 = 53 mod 55. The logical next
question is how many solutions exist? Recall that the first solution we found with BSGS was 7,
and this solution was 27. The difference is 20, which is the order of our plaintext message. This
is actually the case for all RSA discrete log problems. We can produce more solutions to RSA
discrete log problems by adding the order of the plaintext message to a previous solution.

The proof for this is quite simple. We will denote Mn as the maximum possible order across
all invertible elements in n. We know that the ciphertext c raised to the private key d equals the
plaintext message m, in other words cd = m. We can prove that cd+Mn also equals m. This is
because cd+Mn = cdcMn . It is clear that ord(m) = ord(c), and therefore cMn = 1. Therefore,
cd+Mn = cd · 1 = cd = m. We have now proven that we can find more solutions to these discrete
log probelms by adding the order of the plaintext message to a previous solution. Thus, we know
that there are multiple keys that can decrypt a RSA discrete log problem.

3 Alternative BSGS Usage

3.1 Example

In this section we will walk through an RSA example to illustrate an alternative way to use BSGS to
get the most likely φ(n) and the matching private key d. We will start with only publicly available
information. In RSA, the only thing that is made public is the public key (n, e). In this example we
will use n = 1189, e = 3. As discussed in the earlier section, the best way to use BSGS on an RSA
DLP is a chosen plaintext attack. In a chosen plaintext attack, we select and encrypt a plaintext
message so that we can craft our own discrete log problem. We will choose plaintext message m to
be 35. To encrypt m, we use me = c mod n. In our example c = 353 = 71 mod 1189. Now that we
have chosen and encrypted our plaintext, we can set up the DLP. As a reminder the DLP for RSA
looks like cd = m mod n. Thus the DLP for our example is

71d = 35 mod 1189.

We can now use BSGS to find a solution to this problem. For simplicity, we will use generic
DLP notation when doing BSGS: g = 71, h = 35, n = 1189. The first step in BSGS is to set

5

N = ord(g) = ord(71) = 280. Next, we set m = 1 + b
√
Nc = 1 + b

√
280c = 18. Now we can create

List B and List G.

i 0 1 2 3 4 5 6 7 8 9 10

List B 1 71 (g) 285 (g2) 22 373 325 484 1072 16 1136 993
List G 35 (h) 767 (hg−m) 468 (hg−2m) 608 109 792 846 93 883 700 1072

Notice the collision at i = 7 and j = 10. Using these values for i and j, we can calculate the
solution x = i + jm = 7 + 10(18) = 187. This value should decrypt our problem, and it does. By
plugging in x = 7 into the decryption formula we get 71187 = 35 mod 1189.

To test our solution even more, let’s use this key to encrypt and decrypt another message. We
will use m = 68. This means that the ciphertext c = 683 = 536 mod 1189. In order for our newly
discovered solution to be a true solution, it must decrypt 536 and give us 68. This means 536187

mod 1189 must equal 65, and it does. That means that this solution can act as a private key
for RSA and decrypt messages in Zn. However, this is not the matching private key for (1189, 3).
Recall that to create the matching private key we used d = e−1 mod φ(n). Sadly, d = 187 does not
make this expression true. However, there is a way to use BSGS to continue to find φ(n) and then
the matching private key.

First we must run BSGS again, but this time we will let BSGS run until the second collision
is found. Here are portions from list B and list G if they were extended. In order to save space, i
starts at 23.

i 23 24 25 26 27 28 29 30 31 32 33 34 35

List B 962 529 700 951 937 1132 709 401 1124 141 499 948 724
List G 526 724 341 67 585 760 1028 990 463 1008 212 875

Notice the second collision happens at i = 35 and j = 24. Thus, we can calculate our second
solution: x = 35 + 24(18) = 467. As with our last solution, this solution can decrypt messages but
is not the matching private key. However, we can use our two solutions to obtain a most likely
candidate for φ(n).

First, we calculate the difference between the two solutions: s1 − s0 = 467 − 187 = 280. This
number is the order of our plain text message, and can be used to generate a set of solutions by
adding 280 (Mn) to a previously found solution. For example, the next solution we can create is
747, which is 467 + 280. We can continue this and create more solutions, 1027(747 + 280) and
1307(1027 + 280) that also decrypt our Discrete Log Problem. However, we need to limit this set
of solutions so we will use this set of solutions mod φ(n). If we mod φ(n) the length of the set of

solutions is φ(n)
ord(m) . This will be explained in a later section. Recall that φ(n) = (p− 1)(q− 1), but

we do not know p or q. This means we cannot calculate φ(n) or length at this time. However, we
can use an estimate of φ(n) to discover the most likely φ(n).

To do this we will estimate φ(n) using φ(n)est = n − 2b
√
nc [3]. This estimate is larger than

the actual φ(n) but close enough to allow us to discover the most likely φ(n). To differentiate
between φ(n) and our estimate, we will denote the estimated φ(n) as φ(n)est. For this example,
φ(n)est = n − 2b

√
nc = 1189 − 2b

√
1189c = 1121. Now we can calculate the approximate length

of the solution set using φ(n)est for φ(n) in our length expression. This means L = φ(n)est
ord(m) =

1121
280 = 4.0036. We know that the length can’t be a decimal, and we also know that our estimated
φ(n) was too large so to get the actual length we need to floor this number, b4.0036c = 4. We
now know the length of our solution set mod φ(n) is 4. We can calculate the most likely φ(n) by
rearranging our length formula to produce φ(n) = ord(m) · L. Plugging in our example variables

6

gives φ(n) = ord(m) · L = 280 · 4 = 1120. We have done it. The most likely candidate for φ(n) is
1120. Additionally, the correct φ(n) is 1120.

Now to find our matching private key, we can use d = e−1 mod φ(n). Plugging in our example
variable produces 3−1 = 747 mod 1120. This is the correct private key. We have now been able
to use BSGS to find a solution to this DLP, the most likely φ(n), and the matching RSA private
key while only having access to the RSA public key. This approach has potential, but we did leave
out some key details explaining how we are able to do these steps. In the next sections, we will
generalize this algorithm and explain the mathematics that allows us to use this algorithm to solve
an RSA Discrete Log Problem.

3.2 Algorithm

Now that we have seen an example of our alternative BSGS usage, we can walk through this
algorithm in general terms.

We will start with having only an RSA public key (n, e).

1. Choose a message h and encrypt with he = g mod n to get ciphertext g.

2. Set up the DLP for this problem using gx = h mod n.

3. Run Shanks’ baby-step/giant-step on this DLP until two collisions are found. Use each
collision to compute a solution. We will denote the first solution as s1 and the second
solution as s2.

4. Compute the maximal order of the plaintext message using Mn = s2 − s1.

5. Estimate φ(n) using φ(n)est = n− 2b
√
nc

6. Calculate the approximate length of the solution set mod φ(n) using L = φ(n)est
Mn

7. Find the most likely φ(n) using φ(n)rev = bLc ·Mn.

8. Find the matching private key d using d = e−1 mod φ(n)

Now that we have enumerated the steps to the algorithm, let’s discuss each step in more detail.
The first two steps allow us to carry out a chosen plaintext attack. As a reminder, a chosen plaintext
attack is where we select a message and encrypt it ourselves to create a DLP. To do the next step,
we must first define two conjectures.

Conjecture 3.1. BSGS will always produce a solution that is a valid decryptor for all messages
m ∈ Zn.

Conjecture 3.2. Running BSGS twice will always produce two sequential solutions, where the
difference is Mn.

Using these conjectures, the third step allows us to strategically use BSGS to find the maximal
order of our plaintext message (Mn). Although the first step of BSGS is to find the order of the
plaintext message, N = ord(g), this order is of an element and cannot be used for generating a
set of solutions. However, the two solutions produced by BSGS are separated by the true maximal
order of the plaintext message, which is why we compute the difference of the solutions as step
four. Step five uses a published upper bound for φ(n) to give us an adequate estimated φ(n).

7

Step six requires a lengthier explanation. It is a known fact that Mn divides φ(n). That means

there exists some L where L = φ(n)
Mn

. However, this doesn’t explain why this is the length of our
solution set. Suppose we have solution s1. To generate more solutions we can use s = s1 + rMn,
where r ∈ Z. Eventually we will reach r = L, where s = s1 +LMn or in other words, s = s1 +φ(n).
However, we are generating solutions mod φ(n), meaning s = s1 + φ(n) = s1. We have now circled
back to the beginning of our set. Thus, there are L solutions in our set mod φ(n).

In step six of our algorithm, we use an estimated φ(n), denoted φ(n)est, to find an approximate
length. As seen in our example, φ(n)est is larger than φ(n) and L is a decimal number. Thus we
need to floor L before using it to calculate the most likely φ(n), denoted φ(n)rev. In step seven, we
rearrange the length equation to solve for φ(n) and use the floor of L to calculate φ(n)rev. Finally,
in step eight, we use the RSA algorithm for creating private keys to find our matching private key
d.

In this algorithm, there are a few spots where we have skipped proofs. For example, we did
not prove that the solutions produced by BSGS always decyrpt, or that φest− φ(n) < Mn which is
required to prove we can do the last step of the algorithm to find the most likely φ(n). We do not
have proofs for these statements. However we have run 250 trials of varying length moduli and all
trials support these conjectures. The summary and discussion of these trials will be discussed in
the next subsection.

3.3 Analysis

In this section, we will discuss the findings of the 250 test cases that were run against our new
algorithm. All test cases can be found in Appendix A. To produce the test cases, random primes
p and q were selected. The modulus n was then calculated and an e that satisfies gcd(e, φ(n)) = 1
was selected. Every test case used m = 53 or m = 54. In an ideal chosen plaintext attack, a
message with a easily computed order would have been selected for each modulus. However, since
we are running a large data set, a generic message was used. Finally our new algorithm was run
against the public key (n, e). A small subset of these cases are included below for discussion.

n e φ(n)rev φ(n) φ(n)rev − φ(n) Runtime (s)

55 3 40 40 0 1.8358e-05
6767 7 6600 6600 0 0.00012708

196481 7 193200 193200 0 0.00081587
9069271 3 9061000 9061000 0 0.009043

141701759 7 141676704 141676704 0 3.155
450933727 3 450890776 450890776 0 15.015
571110181 7 571061664 571061664 0 6.6785
628834919 7 628784520 628784520 0 0.63923
802889363 7 802832688 802832688 0 55.013

The first column n is the modulus used for that test case and the second column is the matching
public exponent e. The moduli used for the test cases were created by taking the product of
randomly selected prime numbers. The moduli used in these cases ranged from two digits to ten
digits. The third column shows the most likely φ(n) found by our algorithm, denoted φ(n)rev for
revised estimate. The fourth column shows the true φ(n). To further enforce the accuracy of our
algorithm, the fifth column shows the difference between our candidate for φ(n) and the true φ(n).
This value was zero for all test cases, meaning our algorithm found the correct φ(n) every time.
The last column shows runtime of each test case in seconds. The average runtime for all 250 test

8

cases was 4.2457 seconds. This is faster than the average runtime of trying to factor n into n = pq
which was 8.3212 seconds for all 250 test cases.

Let’s discuss the efficiency of this new algorithm. Since the algorithm relies on running BSGS
twice, it is twice as exhaustive as BSGS on memory. However, even with this extensive memory
usage, this algorithm is faster than trying to factor n to find pq on average. Although the accuracy
of the algorithm has not been proven, the test cases support that the algorithm will always be able
to produce a solution and find the matching RSA private key.

9

A Test Cases

n e φ(n)rev φ(n) φ(n)rev − φ(n) Runtime (s)

55 3 40 40 0 1.8358e-05
69 3 44 44 0 1.3113e-05
85 3 64 64 0 1.4067e-05
323 7 288 288 0 2.5988e-05
973 7 828 828 0 7.391e-05
1241 7 1152 1152 0 3.4094e-05
1387 7 1296 1296 0 3.1948e-05
3749 7 3564 3564 0 6.4135e-05
3827 7 3696 3696 0 0.00031114
4009 7 3780 3780 0 0.00017095
5767 7 5616 5616 0 0.00013304
6767 7 6600 6600 0 0.00012708
7313 7 7140 7140 0 0.00042391
8479 7 8280 8280 0 0.00016904
8977 3 8740 8740 0 0.00049186
9143 7 8880 8880 0 0.00060272
12193 3 11968 11968 0 0.00037217
15853 3 15580 15580 0 0.001384
23533 3 23200 23200 0 0.0022011
24503 7 24168 24168 0 0.00026584
37627 3 37240 37240 0 0.002625
196481 7 193200 193200 0 0.00081587
654289 3 646324 646324 0 0.035557
784639 7 782856 782856 0 0.010215
859043 7 854400 854400 0 0.054813
2646823 3 2640088 2640088 0 0.077633
2722121 7 2708244 2708244 0 0.15295
3526577 7 3522420 3522420 0 0.068986
4255127 7 4245360 4245360 0 0.019329
4325003 7 4318440 4318440 0 0.029
4330891 7 4321512 4321512 0 0.021102
4640033 7 4613040 4613040 0 0.030334
4754831 7 4734192 4734192 0 0.25225
5823613 7 5817600 5817600 0 0.062107
6087559 3 6063616 6063616 0 0.32129
6847933 3 6822208 6822208 0 0.03035
6856961 7 6841812 6841812 0 0.37865
8300791 3 8294584 8294584 0 0.42453
9069271 3 9061000 9061000 0 0.009043
9873781 3 9852172 9852172 0 0.27026
9890449 7 9884160 9884160 0 0.0032811
10608361 3 10599424 10599424 0 0.14711
11637229 7 11625984 11625984 0 0.00348
12218021 7 12208812 12208812 0 0.31516

10

n e φ(n)rev φ(n) φ(n)rev − φ(n) Runtime (s)

12904427 7 12896880 12896880 0 0.021717
13726877 7 13714716 13714716 0 0.36001
15048613 3 15040300 15040300 0 0.77451
15897289 3 15879556 15879556 0 0.08427
16636709 7 16610880 16610880 0 0.01205
16731059 7 16720704 16720704 0 0.016105
18410999 7 18392400 18392400 0 0.035305
23266769 7 23248740 23248740 0 0.42889
23307829 3 23279776 23279776 0 0.32106
23632717 7 23617980 23617980 0 0.23157
24172723 3 24162880 24162880 0 0.19786
24465611 7 24447672 24447672 0 0.007551
25150187 7 25140120 25140120 0 0.28527
25258231 7 25236000 25236000 0 0.039919
25380617 7 25368960 25368960 0 0.079527
26339431 7 26329032 26329032 0 0.49804
26597357 7 26585280 26585280 0 0.15976
27346127 7 27334776 27334776 0 0.76538
27695527 7 27669096 27669096 0 0.51714
28440011 7 28422912 28422912 0 1.5919
28972051 3 28957552 28957552 0 1.6474
29684131 3 29668912 29668912 0 0.24891
30769927 7 30752496 30752496 0 0.012291
30801269 7 30778860 30778860 0 0.89935
31534259 7 31518000 31518000 0 0.31422
33918499 7 33895440 33895440 0 0.09387
34068869 7 34050540 34050540 0 2.0576
34826443 7 34796520 34796520 0 0.032951
34837643 7 34817520 34817520 0 0.70316
36912149 7 36899136 36899136 0 0.10205
36937183 3 36918280 36918280 0 1.1535
38202767 7 38182560 38182560 0 0.59846
39376451 7 39362232 39362232 0 2.3942
39556787 7 39544176 39544176 0 0.15396
43074833 7 43046640 43046640 0 0.038461
44890717 7 44876700 44876700 0 0.98519
48107471 7 48093600 48093600 0 0.61834
49600409 7 49586304 49586304 0 0.7867
52097321 7 52078992 52078992 0 0.0081179
53319317 7 53299980 53299980 0 3.5668
56461079 7 56445984 56445984 0 0.59945
58222667 7 58207296 58207296 0 3.6917
59724109 7 59696316 59696316 0 0.63324
60494047 3 60478360 60478360 0 0.97379
60614227 7 60598656 60598656 0 0.1841
61000603 7 60978960 60978960 0 0.33276
61139791 3 61112632 61112632 0 3.9956

11

n e φ(n)rev φ(n) φ(n)rev − φ(n) Runtime (s)

63075163 7 63043200 63043200 0 0.23214
68244251 7 68223504 68223504 0 2.2285
73835327 7 73817760 73817760 0 4.8599
75744733 3 75723040 75723040 0 0.26538
76619957 7 76599936 76599936 0 0.12937
79998983 7 79978200 79978200 0 2.6393
80079919 3 80056960 80056960 0 1.3746
82467703 3 82448608 82448608 0 2.6665
82816081 7 82792512 82792512 0 0.15839
84188497 3 84169396 84169396 0 2.7315
84409147 7 84384576 84384576 0 1.8283
85966163 7 85944408 85944408 0 1.8768
90100961 7 90078912 90078912 0 0.25038
91582823 7 91563648 91563648 0 0.50146
97696771 7 97674552 97674552 0 0.72244
101133407 7 101111136 101111136 0 1.1031
103149379 7 103117176 103117176 0 0.74879
103704893 7 103683900 103683900 0 2.2695
107441651 7 107415000 107415000 0 0.15898
109113247 3 109085080 109085080 0 7.2908
110483773 7 110459808 110459808 0 1.2249
111775507 3 111754240 111754240 0 0.29079
111938129 7 111913584 111913584 0 1.841
113825797 7 113804460 113804460 0 0.13069
121973923 7 121944168 121944168 0 2.7146
124184393 7 124154640 124154640 0 0.16151
126739741 3 126717184 126717184 0 2.0874
129785783 7 129761160 129761160 0 2.8618
136511539 3 136487824 136487824 0 4.5273
138314117 7 138290316 138290316 0 4.7832
138447733 3 138422368 138422368 0 4.6893
139025093 7 139000620 139000620 0 9.2772
139738139 7 139707024 139707024 0 3.0905
141014233 7 140987700 140987700 0 3.094
141701759 7 141676704 141676704 0 3.155
144827611 3 144802672 144802672 0 2.3838
146255999 7 146231760 146231760 0 9.6838
153115153 7 153085680 153085680 0 1.7067
154995811 3 154970800 154970800 0 2.1016
156653089 7 156619440 156619440 0 0.027266
158888269 3 158862460 158862460 0 5.3302
160367173 3 160341280 160341280 0 1.3634
165550361 7 165524352 165524352 0 0.70164
168481351 7 168455232 168455232 0 0.17721
169739593 3 169711360 169711360 0 1.4388
170636503 7 170609760 170609760 0 3.9999
172207699 3 172177864 172177864 0 11.424

12

n e φ(n)rev φ(n) φ(n)rev − φ(n) Runtime (s)

173966131 3 173937064 173937064 0 11.835
174306749 7 174280320 174280320 0 5.9489
176096941 3 176070400 176070400 0 1.1747
178455401 7 178424532 178424532 0 0.37067
182739127 7 182710440 182710440 0 1.3701
182766319 7 182737944 182737944 0 2.0466
182867513 7 182840448 182840448 0 0.52069
183244433 7 183211248 183211248 0 3.0322
184543937 7 184511316 184511316 0 12.506
187799429 7 187766976 187766976 0 3.4021
190534919 7 190499040 190499040 0 3.2051
195217963 7 195186240 195186240 0 0.49844
198632059 3 198597904 198597904 0 6.6442
214269259 7 214239600 214239600 0 0.79801
219730289 7 219697380 219697380 0 0.26326
222569047 3 222538576 222538576 0 0.29209
222592537 7 222558516 222558516 0 1.6599
225387007 3 225354040 225354040 0 14.967
225889201 3 225859072 225859072 0 0.9363
233979631 7 233948232 233948232 0 5.2195
234903083 7 234871728 234871728 0 8.0473
236455987 3 236424376 236424376 0 16.357
237022991 7 236988432 236988432 0 0.0016582
237362183 7 237324840 237324840 0 5.3126
237915547 3 237881896 237881896 0 7.8839
240048101 7 240016992 240016992 0 7.9556
248677969 3 248645440 248645440 0 4.2835
253900613 7 253867020 253867020 0 5.5963
255590407 3 255557920 255557920 0 17.068
268419007 3 268385800 268385800 0 8.9029
270480233 7 270447060 270447060 0 18.007
273349669 3 273312640 273312640 0 9.147
277188547 7 277155216 277155216 0 0.18124
277418213 7 277384800 277384800 0 9.2195
280617823 7 280582128 280582128 0 1.5836
285017417 7 284981760 284981760 0 1.1936
290060471 7 290021592 290021592 0 2.7767
290458079 7 290419800 290419800 0 19.228
291692963 7 291658800 291658800 0 0.017815
296912501 7 296877504 296877504 0 3.2972
298053169 7 298016496 298016496 0 3.2853
310189357 7 310153536 310153536 0 1.1879
324842003 7 324803448 324803448 0 21.906
325690663 7 325654560 325654560 0 0.00262
335380819 3 335344096 335344096 0 22.6
336277171 7 336236472 336236472 0 0.45205
343117351 3 343079104 343079104 0 5.6948

13

n e φ(n)rev φ(n) φ(n)rev − φ(n) Runtime (s)

356274917 7 356236320 356236320 0 5.9276
359696171 7 359658144 359658144 0 1.4918
363709987 7 363671640 363671640 0 4.0597
372878453 7 372836640 372836640 0 1.2625
387062051 7 387022704 387022704 0 4.2928
399917993 7 399877968 399877968 0 4.4239
402817097 7 402773700 402773700 0 8.8959
402865937 7 402825780 402825780 0 0.86695
411245309 7 411203100 411203100 0 9.1242
416281483 7 416239200 416239200 0 9.1915
417595847 7 417552696 417552696 0 14.072
420303691 3 420262672 420262672 0 7.0016
437545349 7 437502636 437502636 0 29.171
450933727 3 450890776 450890776 0 15.015
455193419 7 455149944 455149944 0 31.549
463958983 3 463913680 463913680 0 4.1178
482505559 7 482460840 482460840 0 10.914
500448787 3 500403976 500403976 0 35.843
504222679 7 504176400 504176400 0 1.3722
533741213 7 533695008 533695008 0 9.7099
559614493 3 559566940 559566940 0 20.32
560385809 7 560337204 560337204 0 0.34047
571110181 7 571061664 571061664 0 6.6785
575645573 7 575597568 575597568 0 19.93
603092363 7 603042720 603042720 0 10.226
614123129 7 614072676 614072676 0 14.179
628834919 7 628784520 628784520 0 0.63923
660824441 7 660772752 660772752 0 7.4881
662630249 7 662578500 662578500 0 7.5057
687999493 3 687947008 687947008 0 23.486
689052583 3 689000080 689000080 0 24.003
700822051 3 700769104 700769104 0 47.435
723309439 7 723255624 723255624 0 16.596
794768321 7 794711892 794711892 0 27.003
802889363 7 802832688 802832688 0 55.013
847628293 3 847570060 847570060 0 57.529

B RSA Proof

Theorem (RSA). Suppose that n = pq where p and q are distinct primes. Suppose that e is
selected so that gcd(e, φ(n)) = 1 and that d = e−1 mod φ(n). Then for any element m ∈ Zn we
have

med ≡ m (mod n)

14

Proof. To get started, note that since d = e−1 mod φ(n) we know that ed = 1 mod φ(n). Thus,

ed = 1 + kφ(n)

for some integer k. We will now use this to prove that med = m mod n, no matter what m is. The
proof falls into several cases, depending on whether or not p or q happen to divide your message
m. (Note that if both p and q happen to divide m then m = 0 mod n, in which case it is obvious
that med = m mod n: any power of 0 is still 0.)
Case 1: Neither p nor q is a factor of m.
In this case m can have no common factors with n = pq. Euler’s theroem tells us that mφ(n) =
1 mod n. Hence we may compute med mod n as follows:

med = m1+kφ(n)

= m ·mkφ(n)

= m ·
(
mφ(n)

)k
= m · 1k

= m.

Case 2: q is a factor of m but p is not.
Since q is a factor of m we have m = 0 mod q. Then

med = 0ed = 0 = m mod q.

Since p is not a factor of m, Euler’s Theorem also tells us that mp−1 = 1 mod p. We may compute
med mod p as follows:

med = m1+kφ(n)

= m1+k(p−1)(q−1)

= m ·mk(p−1)(q−1)

= m ·
(
mp−1

)k(q−1)

= m · 1k(q−1)

= m.

We have just argued that med = m mod p and med = m mod q, which is what we wanted.
Case 3: p is a factor of m but q is not.
The argument for this case is just like the previous, but with the roles of p and q reversed.

Thus in all possible cases med ≡ m (mod n), which is what we wanted to prove.

15

References

[1] Andysah Putera Utama Siahaan, E Elviwani, and Boni Oktaviana, Comparative analysis of rsa
and elgamal cryptographic public-key algorithms, Proceedings of the Joint Workshop KO2PI
and the 1st International Conference on Advance amp; Scientific Innovation (Brussels, BEL),
ICASI’18, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2018, p. 163–172.

[2] Wen WAN Xingbo WANG, Zhikui DUAN1, Some new inequalities with proofs and comments
on applications, vol. 10, Canadian Center of Science and Education, 2018.

16

	Simulations of an Attack on RSA
	Recommended Citation

	tmp.1620408996.pdf.DCmwT

