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Abstract

Insurance loss is an unpredicted event that stands at the forefront of the insurance
industry. Loss in insurance represents the costs or expenses incurred due to a claim.
An insurance claim is a request for the insurance company to pay for damage caused
to an individual’s property. Loss can be measured by how much money (the dollar
amount) has been paid out by the insurance company to repair the damage or it can
be measured by the number of claims (claim count) made to the insurance company.
Insured events include property damage due to fire, theft, flood, a car accident, etc.
An actuary aims to calculate the probability of an insured event occurring. In this
paper we take a set of existing auto insurance data and model it using the Gamma and
Weibull distributions. We use method of moments and maximum likelihood estimation
to obtain parameter estimates for each distribution. We divide the data into different
attributes where we found that the 60+ age group has slightly different shape/scale
parameters and there is no real difference between male and female drivers.

1 Introduction

Generally speaking, insurance loss data has a distribution that is often unimodal shaped and
right-skewed with heavy tails. In the insurance industry, there is much debate as to which
distribution models insurance loss most accurately. That being said, numerous heavy-tailed
models have been proposed in literature such as Pareto, Lognormal, Weibull, and Gamma
(Ahmad et al). For all of these distributions, their parameters need to be estimated in order
to provide an accurate fit for the data.

Two common methods of parameter estimation are the method-of-moments estimation,
MME, and the maximum-likelihood estimation, MLE. The method-of-moments estimator
is based on the law of large numbers where the sample mean converges to the distributional
mean as the number of observations increased. The maximum likelihood estimator is ob-
tained by maximizing the log-likelihood function. Both of these estimators are consistent and
asymptotically normal, meaning that they should produce very similar results for parameter
estimation (Brazauskas and Kleefeld). Even though these two methods should produce simi-
lar results, it is argued that the MLE provides more accurate parameters in some cases. This
statement is valid for any distribution belonging to the one-parameter exponential family
and any linked function (Brouste et al).

When using these estimation methods, the distribution is assumed to be known. That is, the
distribution has already been established. Therefore, hypothesis testing has to be done in
order to see if the estimated distribution function is the proposed distribution function. Lit-
erature argues that a common way to test this, is to conduct the Kolmogorov-Smirnov Test,
which assesses if a sample comes from a certain population distribution (Hogg and Klug-
man). In addition to this test, we will use two other goodness-of-fit tests to help determine
whether the estimated distribution is a good fit to the data.
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2 Preliminaries

Several preliminary topics must be covered in order to understand the entirety of this re-
search. These topics include the main two distributions used, Gamma and Weibull, and
how to find their parameter estimates using the method-of-moments estimation, MME, and
maximum-likelihood estimation, MLE. Additionally, it is important to understand how the
different types of goodness of fit tests work. R was used to analyze the data, and also sim-
ulate data to make comparisons to the existing data set. Corresponding R Code will be
included in the appendix to show the process of how results were derived.

2.1 Gamma Distribution

The Gamma distribution is a two-parameter family of right-skewed, continuous probability
distributions. The distribution has shape parameter α, and scale parameter β, which is equal
to 1/rate. The probability density function, pdf, is defined by,

f(x) =
1

Γ(α)βα
xα−1e

−x
β , x > 0 (1)

where Γ represents the Gamma function. We also know that the mean and variance are

µ =
α

β
, σ2 =

α

β2
(2)

First, using MME, we need to obtain the first and second moments. WhenX ∼ Gamma(α, β),
then E[X] = α

β
and E[X2] = α+α2

β2 . Therefore, we can determine the method of moments

estimators α̂, β̂ by solving the equations (3) and (4).

E[X] =
α̂

β̂
(3)

E[X2] =
α̂ + α̂2

β̂2
(4)

Using substitution and solving for both α̂ and β̂, we obtain the parameter estimates,

α̂ =
nx2∑n

i=1(xi − x)2
(5)

β̂ =

∑n
i=1(xi − x)2

nx
(6)

where x = 1
n

∑n
i=1(xi). When using MLE to find our parameters, we look at the log-likelihood

function (L) represented in equation 7.

ln[L] = α
∑

lnxi − β
∑

xi + nα(lnβ)− nlnΓ(α) (7)

When taking the derivative with respect to β, we can easily find our estimated β̂ parameter
from this:

β̂ =
x

α̂
(8)
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When we take the derivative with respect to α, we obtain,

n ∗ ln( α̂
x
)− n ∗ digamma(α̂) +

∑
lnxi = 0 (9)

However, to solve (9) for α, the Newton-Raphson method has to be used. Newton’s method is
a root-finding algorithm which produces successively better approximations to the roots (or
zeroes) of a real-valued function. The approximation is a repeated process until a sufficiently
precise value is reached. The process for finding our estimated α is

α̂n+1 = α̂n −
h(α̂n)

h′(α̂n)
(10)

In (10), (9) and it’s derivative are taken to predict the next alpha term. Hence, h(α̂n) is
the same as equation 9 and h′(α̂n), the derivative of (9), is equal to

n
αn

− n ∗ trigamma(αn).
Note that (10) involves the digamma and trigamma functions.

2.2 Weibull Distribution

The Weibull distribution is a two-parameter, prominently heavy-tailed, continuous distribu-
tion. The distribution has shape parameter k and scale parameter λ. The pdf is defined
by

f(x) =
k

λ

(x
λ

)k−1

e−( x
λ
)k , x ≥ 0 (11)

We also know that the mean and variance are

µ = λΓ

(
1 +

1

k

)
, σ2 = λ2

[
Γ

(
1 +

2

k

)
−
(
Γ

(
1 +

1

k

))2
]

(12)

In order to find our parameter estimates using MME, we will need to use the tth moments
and the corresponding sample tth moments. The tth moments mt, t = 1, 2, 3, ... is given by

mt = λtΓ

(
1 +

t

k

)
(13)

The sample tth moments Mt, t = 1, 2, 3, ... is given by

Mt =
1

n

n∑
i=1

xt
i (14)

Now that we have these two equations, we need to analyze the first and second moment
(t = 1, 2) for each of these equations and set them equal to each other. By doing that we
obtain,

λΓ

(
1 +

1

k

)
=

1

n

n∑
i=1

xi (15)
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λ2Γ

(
1 +

2

k

)
=

1

n

n∑
i=1

x2
i (16)

Note that 1
n

∑n
i=1 xi = x̄ and 1

n

∑n
i=1 x

2
i = s2 + x̄2 where x̄ is the sample mean and s2 is the

sample variance. Next we can solve (15) for λ and find that

λ =
x̄

Γ
(
1 + 1

k

) (17)

To solve for k however, we have to take a different approach. To do this, (16) is divided by
the (15) squared. This gives us,

λ2Γ
(
1 + 2

k

)
λ2Γ2

(
1 + 1

k

) =
s2

x̄2
+ 1 (18)

With the λ’s canceling and setting (18) equal to 0, we get,(
s2

x̄2
+ 1

)
Γ2

(
1 +

1

k

)
− Γ

(
1 +

2

k

)
= 0 (19)

Now we can use Newton’s method on (19) to get our estimated k parameter.

To find our parameters using MLE, we take a look at the log-likelihood function of k and λ.
This is represented by Equation 20.

ln[L(k, λ)] = nln[k]− nkln[λ]− 1

λk

n∑
i=1

(xi)
k + (k − 1)

n∑
i=1

(xi) (20)

We need to take the derivative of (20) with respect to k and λ. Taking the derivative with
respect to λ, we can simply find our estimated λ parameter, represented in (21).

λ̂ =

[
1

n

n∑
i=1

(xi)
k

] 1
k

(21)

When we take the derivative with respect to k we obtain,

1

k
−

∑n
i=1(xi)

k ∗ ln(xi)∑n
i=1(xi)k

+
1

n

n∑
i=1

(xi) = 0 (22)

To solve for our estimated k parameter from (22), we again need to use the Newton-Raphson
method.

2.3 Goodness-of-Fit Tests

Throughout this paper we will use three different types of goodness-of-fit tests to determine
whether or not we have correctly estimated parameters and distributions for our data.
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The Kolmogorov-Smirnov (KS) test is used to decide if a sample comes from a population
with a specific distribution. If the p-value obtained is relatively small, then it is acceptable
to agree that the estimated distribution function with the estimated parameters is not a
good fit for the data. Therefore, the null hypothesis and alternative hypothesis are:

H0 : The data follows the specified distribution
Ha : The data does not follow the specified distribution

The test statistic D is used to determine if we reject or fail to reject H0. If D is greater than
the critical value obtained from a KS table, then H0 is rejected. For the sake of this paper,
the significance level is α = 0.05 and the critical value obtained from the KS table is

1.36 ·
√

n1 + n2

n1 ∗ n2

where 1.36 is the coefficient for the corresponding significance level.

We can also use the Kullback-Leibler (KL) divergence, a statistical distance. This is a
measure of how one probability distribution is different from a second probability distri-
bution and how closely they align. KL divergence can be denoted as DKL(P ∥ Q) where
P is the original or observed data and Q is the estimated distribution. Since all of our
distributions throughout this paper are continuous, we define KL divergence as

DKL(P ∥ Q) =

∫
p(x)ln

(
p(x)

q(x)

)
dx,

where p and q are the respective probability densities of P and Q. When DKL is equal to 0,
we can say that the two distributions are identical to each other. DKL has no upper bound,
so the closer our statistic is to 0, the more confident we can be that our distributions are a
good fit for each other.

Additionally, Q-Q Plots are used to visually represent the differences between two distri-
butions by using a scatter plot that is created by plotting two sets of quantiles against one
another. Quantiles from the same distribution should form a line that’s roughly straight.
If there are outlier points or the data doesn’t make a straight line, we can assume that the
data represented from the quantiles do not fall into the same distribution.
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3 Modeling Insurance Loss

Figure 1: Four different types of claim histograms: Total (A), Vehicle (B), Injury (C),
Property (D)

For the purpose of this research, the data set being analyzed includes private passenger
automobile insurance-claims focusing on incidents from 31 Dec 2014 to 28 Feb 2015, with
10,211 records broken down into 39 different categories. Each record represents policy level
claim information describing the policy, the policy holder, the insured person, the insured
vehicle, the occurred accident, and the resulting claim size (i.e loss amount) in U.S. dollars.
The loss amount for each individual claim is broken down into four components: total claim
amount, injury claim, vehicle claim and property claim. Figure 1 shows the histogram of the
four claim types. Additionally, Table 1 outlines the summary statistics for these four claim
types. Note that total claim is made up of the other three claims. Injury claim and property
claim share very similar shapes as they are more right-skewed. Also, total claim amount
and vehicle claim share similar shapes as they are more unimodal with less skewness. The
shapes of these data sets play a large role in trying to figure out which distribution is of
best fit for them. Throughout the rest of this section, each claim will be represented with
either the Gamma and Weibull distribution and we determine how they both fit or don’t
fit the data. There will also be an explanation why different distributions did not work.
Section 4 will look at the different categories for each record and see how different attributes
(age, gender, deductible amount, etc.) affect the distribution and then see if the distribution
changes based on a certain attribute.
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Summary Statistics
Total Claim Injury Claim Property Claim Vehicle Claim

Mean 56586.94 7911.03 8027.50 40794.42
Median 58170 7455 7600 42155
Standard Deviation 27648.78 5460.94 5519.05 19665.25
Skewness -0.0639 0.4121 0.4694 -0.1033
Minimum 100 0 0 10
Maximum 154740 30000 29700 110800

Table 1: Summary Statistics of the Claim Amounts ($) by Type

3.1 Injury and Property Claim

Initially, both Gamma and Weibull distributions were used to try to fit the injury and
property claim data. However, when using both of the methods for parameter estimation,
we found that the MME and MLE estimators were very similar to each other when using
Gamma to fit these two claims. For the other two claim data sets, there was a significant dif-
ference between the parameters that were given for MME and MLE. Therefore, the Gamma
distribution is being used for the injury and property claim data. Using the estimated pa-
rameters we solved for in section 2.2, we found the following parameter estimates for these
two claims represented in Table 2.

Injury Claim Property Claim
Observations, n 9204 9239
Alpha, α 2.0977 2.1275
Beta, β 4150.697 4137.085

Table 2: Gamma Parameter Estimates

When the goodness-of-fit tests were conducted with our claim data and an estimated Gamma
distribution using our parameters, we obtain the following test statistics shown in Table 3.

Injury Claim Property Claim
KS Statistic, D 0.0583 0.0669
KL Divergence 0.5818 0.4279

Table 3: Goodness-of-Fit Tests

Our critical value obtained from the KS table is, 1.36 ·
√

n1+n2

n1∗n2
= 0.020. These test statistics

state that neither the injury claim data nor the property claim data come from a Gamma
distribution with our estimated parameters. However, as we can see from the graphs from
Figure 2, the right tails of the distributions seem to be similar but the peaks and left tails
appear to be different. Also, the actual mean and variance from the data are not close enough
to the estimated ones using the parameters that were determined. This leads us to believe
that there could be potential bias or outliers in our data that are causing the goodness-of-fit
tests to indicate that we do not have the correct distribution here. We can confirm this by

7



looking at our Q-Q Plots shown in Figure 3. The scatter plots are more of a curve and there
are also numerous outlier points on the plot.

Figure 2: Gamma: Comparing Estimated vs. Actual Data

Theoretical vs. Sample Quantiles

Figure 3: Q-Q Plots of Injury (L) and Property Claim (R)

In order to eliminate the bias or outliers, we have broken down the data into two different
parts. To determine where we should break the data up, we used our initial histograms
shown in Figure 1. There is a large dip in both the injury and property claim histograms
that seems to be causing a problem in fitting our data, the break occurs at 4000 for each
claim type.

8



Figure 4: Separated Injury and Property Claim

Now we are analyzing claims from 0 to 4000 and claims greater than 4000. Our new his-
tograms are represented in Figure 4. The histograms on the left represented claims from
0 to 4000 and the histograms on the right represent claims greater than 4000. To better
understand these new data sets, a short summary statistics is shown in Table 4.

Summary Statistics
Lower IC Upper IC Lower PC Upper PC

Observations, n 2785 7345 2706 7424
Mean 1474.86 10351.55 1509.21 10403.49
Standard Deviation 1394.02 4327.39 1415.06 4438.17
Skewness 0.3399 0.6899 0.2975 0.7872

Table 4: Summary Statistics

From the shape of the two lower tail claims, we can see that this data cannot be fit with a
specific distribution. The Pareto distribution was considered to try and fit this shape. How-
ever, since the frequency of claims is not decreasing and is instead staying fairly uniform,
the Pareto distribution was not a good fit. The reason there is such a high frequency in the
first histogram bar, is due to the large amount of claims that were 0 for injury and property
claim. Including these claims is reflective of real life insurance data because when a claim is
filed, there may only be damage or a claim needed in one area leaving the other claims at
a 0 value. Without those 0 value claims, we can assume that for claims under 4000 in both
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injury and property claim, the distribution can be almost uniform.

The greater than 4000 claims are the claims that can be better represented by our Gamma
distribution. Both the Upper IC and Lower IC have extreme skewness with heavy tails.
Using these two new components of injury and property claim we have our new parameter
estimates shown in Table 5.

Upper IC Upper PC
Alpha, α 5.7229 5.7235
Beta, β 1808.783 1817.681

Table 5: New Gamma Parameter Estimates

When rerunning the goodness-of-fit tests in R with our separated claim data, we obtain the
following test statistics shown in Table 6.

Injury Claim Property Claim
KS Statistic, D 0.04153 0.03233
KL Divergence 0.4008 0.3603

Table 6: Goodness-of-Fit Tests

Our critical value obtained from the KS table based on our new number of observations
for injury claim is 0.022 and for property claim is also 0.022. We now have test statistics
that are significantly closer to our critical values and our KL Divergence values were cut in
half are substantially closer to 0. Additionally, our estimated mean and standard deviation
are almost the exact same as the true mean and standard deviation which indicates these
estimators are a good fit. While these statistics might not be perfect, we can be confident
that we have correctly represented our injury and property claim data using the Gamma
distribution. This can be reflected in the graphs from Figure 5.

Figure 5: Upper Injury Claim & Property Claim Actual vs. Estimated

Because our data set is a company’s real life data, getting a perfect match would be unrealistic
but our estimations are believed to be as close as we can get. We did try to fit this separated
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injury and property claim data with the Rayleigh distribution and the Weibull Distribution
but neither were as close of fit as the Gamma distribution for these two claims.

3.2 Total and Vehicle Claim

Contrary to the other two claims, we found that the MLE and MME Weibull estimators were
very similar to each other for total and vehicle claims. Therefore, the Weibull distribution
is being used for the total claim amount and vehicle claim data. The parameter estimates
for these two claims can be seen in Table 7.

Total Claim Amount Vehicle Claim
k 2.08172 2.11328
λ 63457.52 45744.65

Table 7: Weibull Parameter Estimates

When the goodness-of-fit tests were conducted with our claim data and an estimated Weibull
distribution using our parameters, we obtain the test statistics shown in Table 8.

Total Claim Amount Vehicle Claim
Test Statistic, D 0.070089 0.067029
KL Divergence 0.4245 0.3549

Table 8: Goodness-of-Fit Tests

Figure 6: Weibull: Comparing Estimated vs. Actual Data

We have the same critical value as before equal to 0.019 because n1 = n2 = 10130. Again
the KS test statistics state that neither the total claim amount data nor the vehicle claim
data come from a Weibull distribution with our estimated parameters. However, these test
statistics are better than the previous ones and suggest that Weibull might be the correct
distribution for this data. Also note that our KL Divergence is much closer to 0 than it was
for the Gamma estimates. Additionally, based off of these parameters, the estimated mean
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and standard deviation are not as close as the true values. Again, as we can see from the
graphs in Figure 6, the right tails of the distributions seem to be similar with only slightly
different peaks and left tails. This can be confirmed by our Q-Q Plots shown in Figure 7.
The scatter plots are curved to start but then they start to form a straight line as the claims
get larger.

Figure 7: Q-Q Plots of Total (L) and Vehicle Claim (R)

To find a better fit for our data, we will segregate total and vehicle claims but at different
points. Total claim will be separated at 30,000 so we have claims from 0 to 30,000 and claims
greater than 30,000. Vehicle claim will be separated at 10,000, so we have claims from 0 to
10,000 and claims greater than 10,000. The summary statistics of the broken down claims
are shown in Table 9.

Summary Statistics
Lower TC Upper TC Lower VC Upper VC

Observations, n 1905 8225 892 9238
Mean 14857.07 66252.04 4823.49 44267.69
Standard Deviation 8812.213 20658.09 2801.64 16920.25
Skewness 0.0475 0.4692 0.1490 0.1423

Table 9: Summary Statistics

The new histograms are shown in Figure 8. The histograms on the left represent the two
lower claims of the data and the right-side histograms show the upper portion of the claims.
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Figure 8: Separated Total and Vehicle Claim

Based on the histograms from the two lower half claim amounts, it can be concluded that
the Uniform distribution would be the best fit because there is not significant fluctuation.
The estimated Uniform parameters are represented in Table 10, where a is the minimum,
and b is the maximum.

Lower TC Lower VC
a 100 10
b 30000 10000

Table 10: Uniform Parameter Estimates

For lower total claim, our critical value is 0.044 and we found a test statistic, D of 0.024.
For lower vehicle claim, our critical value is 0.064 and we found a test statistic, D of 0.050.
These statistics confirm that these lower claims do follow a Uniform distribution. This is
helpful because it confirms that there was a portion of the whole data that was causing our
initial tests to be thrown off.

We are now left with the upper portions of our total and vehicle claims. First to start
with total claims, we note that these claims areskewed with a heavy tail. After analyzing
both the Gamma and Weibull distributions are these upper portion of claims, we actually
find that Gamma is the best distribution used to fit this data. Our parameters are shown in
Table 11.

13



Upper TC
Alpha, α 10.204
Beta, β 6493.065

Table 11: Gamma Parameters

To confirm that our new parameters and distribution are accurate for this upper portion of
total claims, we ran our ks.test in R. We did not include the KL Divergence for these claims
because the ranges of the actual and simulated data were too different causing KL to be
invalid. With the number of observations being equal to 8225, our critical value from the
KS Table is 0.021. The test statistic that we obtained from these new estimated parameters
was 0.021. This means we have found the correct distribution for this portion of the total
claim amounts. The graph of the estimated versus actual distribution and it’s Q-Q Plot are
shown in Figure 9 and 10.

Figure 9: Upper Total Claim Actual vs. Estimated
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Figure 10: Upper Total Claim Q-Q Plot

Moving to the upper portion of vehicle claims, we notice that the histogram is not very
skewed. While initially we considered using a Normal or Truncated Normal distribution to
fit this data, the data does not include negative values for it to be Normal and there is a peak
so it cannot be Truncated. After trying to fit the data with both the Gamma and Weibull
distribution, we found that Weibull was of better fit for this portion of vehicle claims. Our
parameters are shown in Table 12.

Upper Vehicle Claim
k 2.856
λ 49689.191

Table 12: Upper Vehicle Claim Weibull Parameters

We again need to verify that our new parameters and Weibull distribution are accurate
for this upper portion of vehicle claims so we will use the ks.test. With the number of
observations being equal to 9238, our critical value from the KS Table is 0.020. The test
statistic that we obtained from these new estimated parameters was 0.019. In addition to
the total claims, we have now found the correct distribution for this portion of vehicle claims.
The graph of the estimated versus actual distribution and it’s Q-Q Plot are shown in Figure
11 and 12.
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Figure 11: Upper Vehicle Claim Actual vs. Estimated

Figure 12: Upper Vehicle Claim Q-Q Plot

4 Analyzing Attributes

To better understand our data, we analyzed four different attributes that our data could
be broken into: age, gender, incident time of day, and geographic region. For each of these
attributes, we analyzed ’Total Claim Amount’(TCA), data for simplicity and due to the other
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three claim types being a part of the total. Therefore, the attributes will be represented by
the Weibull distribution.

4.1 Age

In this set of data, age ranged from 18 to 79 years. Since this was a larger range, we decided
to break up the data into six smaller groups. The smaller groups were based on how insurance
companies break up their age groups instead of making even mathematical breaks. The age
groups are summarized in Table 13.

Age Group Observations, n TCAMean
All 10130 56586.94
18 to 20 341 57072.17
21 to 25 752 56390.24
26 to 35 2898 55974.61
36 to 45 3297 55869.46
46 to 59 2350 57522.43
60+ 492 60497.85

Table 13: Age Summary

To analyze if any of these groups were significantly different from each other or all the
ages combined, we first used the Kruskal-Wallis test to compare each group. This is a
non-parametic method for testing whether samples originate from the same distribution. If
the p-value is less than the significance level, α = 0.05, we can conclude that the samples
come from different distributions. When running this test in R, we obtain a p-value of 0.012,
meaning that there are differences between these 7 groups. To further analyze and find where
the differences occur, we used a ”pairwise t test” with the Bonferroni correction method.
The t test compares the means of each individual group and the Bonferroni correction divides
the critical p-value by the number of comparisons being made. We used this test because
we wanted to see the effect of outliers on the mean. When administering this test in R, we
found that there were significant differences (p-value ¡ 0.05) between all the ages and the age
group of 60+. This suggests that individuals 60 years and older are more likely to have a
larger total claim amount compared to younger age groups.
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Figure 13: Comparing Age Group Distributions

We also estimated the parameters of each age group using the Weibull distribution to see if
the distributions were similar to each other. In each estimation, the distribution has 10,130
observations. As shown in Figure 13, the 60+ age group is the group that is showing the
most difference among the groups. It can also be said that there is a difference between
the 18 to 20 age group. Our data and estimated parameters are consistent with insurance
studies stating that there are differences in insurance claims for younger drivers and older
drivers.

4.2 Gender

For this paper, gender is classified as male and female. The summary of these two variables
are represented in Table 14. There are more females than males. Also, the means do not
seem to differ too much from the whole TCA data set.

Gender Observations, n TCAMean
All 10130 56586.94
Female 5405 57007.17
Male 4725 56106.24

Table 14: Gender Summary
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Figure 14: Comparing Gender Distributions

To analyze if these groups were significantly different from each other or all the TCA data
combined, we again used the Kruskal-Wallis test to compare the groups. In this case, we
obtained a p-value of 0.262. Therefore, we do not see a significant difference in total claim
amounts between the two genders. However, as shown in Figure 14, the parameter estimates
indicate that there is a difference between genders right around the peak of the distribution.
The higher peak indicates that more males have the mean claim amount than females do.
This could be explained by the fact that insurance claims do tend to be different for males
in certain cases.

4.3 Incident Time of Day

Another attribute that we thought would be relevant to look at was the time of day in
which the incident occurred. We broke the 24 hour day into 8-hour increments. The first
group is representative of the early hours of the day, from midnight to 7am. The next is
representative of the morning to mid-afternoon from 8am to 3pm (i.e. 1500). The last group
includes the afternoon to night time from 4pm (i.e. 1600) to 11pm (i.e. 2300). The summary
of these groups are represented in Table 15. The mean is slightly higher as the hours of the
day increase, especially in the later hours of the table.
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Time Observations, n TCAMean
All 10130 56586.94
Early 3272 52527.94
Mid 2801 57271.35
Late 4057 60337.18

Table 15: Time Summary

To test if any of these groups are significantly different, we again use the Kruskal-Wallis test.
The p-value we obtained is so infinitely small that it is basically 0, indicating a significant
difference. Therefore, we will use the ’pairwise t test’ to asses which groups are different
from each other. Again we got p-values that were so infinitely small, meaning that each
individual group is significantly different from each other. This is shown in Figure 15. There
are very little to no similarities across these three distributions.

Figure 15: Comparing Time of Day Distributions

4.4 Region

The last attribute that we decided to look at within our data was region in which the incident
occurred. Insurance differs by what state the insured lives in so we were curious to see if
there was differences between two generalized groups. Seven different states were represented
in this data. Ohio, Pennsylvania, and New York are being represented as northeast (NE),
and Virginia, West Virginia, North Carolina, and South Carolina are being represented as
southeast (SE). There is not much difference between these groups. The summary of these
groups are shown in Table 16.
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Region Observations, n TCAMean
All 10130 56586.94
SE 7040 56385.52
NE 3090 57045.85

Table 16: Region Summary

We did not find a significant difference between these two groups when running our Kruskal-
Wallis test. The p-value obtained was 0.542, meaning these two groups have the highest
similarities among all of the attributes. We can see the similarities in the estimated distri-
butions of the two groups shown in Figure 16.

Figure 16: Comparing Region Distributions

If there are any differences, one could say that the NE has more incidents with some higher
claim amounts compared the the SE. Otherwise, we cannot detect too many differences.
This implies that even though insurance varies by state, it does not largely vary from region
to region.

5 Conclusion

Overall, this research extensively examined the Gamma and Weibull distributions with re-
spect to automobile insurance-claim data. The specific automobile insurance-claim data
examined included four different types of claims. At first we used the Gamma distribution
to estimate the parameters for two of these claims, injury and property, and used the Weibull
distribution for the other two claims, total and vehicle. This gave us results that suggested
the estimated distributions were not a good fit for the data. However, we noticed that the
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data had specific areas of differences and outliers that led us to look closer at our data.
Because we then separated the data into two different portions, we were able to eliminate
the outliers and find the most accurate fit for the data that could be represented by the
Gamma or Weibull distribution. If this research were to be done differently, a data science
approach could be taken. This would divide the data into two or more sets and use one set
to run analysis on to see if it can predict the other sets. Overall, we can conclude and concur
with recent literature, that depending on the shape of the data, the Gamma and Weibull
distribution’s are the best distributions when fitting insurance data. We also found that
there are instances where insurance data cannot be fit or shown in a distribution model.
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Appendix

This appendix includes the R Code used throughout the research. Each separate code is
specific to the individual processes used the estimate the parameters or metrics we were
looking for.

1. Gamma MME

gamma MME<− function (CLAIM){
n <− length (CLAIM)
mean x <− mean(CLAIM)
alpha <− n∗ (mean xˆ2)/sum( (CLAIM−mean x )ˆ2)
beta <− sum( (CLAIM−mean x )ˆ2)/n/mean x
es t imate MME<− data . frame ( alpha , beta )
return ( e s t imate MME) }

gamma MME(CLAIM)

2. Gamma MLE

gamma MLE<− function (CLAIM){
n <− length (CLAIM)
mean x <− mean(CLAIM)
# i n i t i a t e the convergence and a lpha va lue
converg <− 1000
alpha i n i t i a l <− INITIAL ALPHA ESTIMATE
# i n i t i a t e two v e c t o r s to s t o r e a lpha and be ta in each s t ep
alpha e s t <− alpha i n i t i a l
beta e s t <− mean x/alpha i n i t i a l
# Newton−Raphson
while ( converg >0.0000001){

#equat ion
eq <− n∗ log ( alpha i n i t i a l /mean x)−n∗digamma( alpha i n i t i a l )
+sum( log (CLAIM))
#f i r s t d e r i v a t i v e
der1 <− n/alpha i n i t i a l −n∗trigamma( alpha i n i t i a l )
#ca l c u l a t e next a lpha
alpha next <− alpha i n i t i a l −(eq/der1 )
# ge t the convergence va lue
converg <− abs ( alpha next−alpha i n i t i a l )
# s to r e e s t ima to r s in each s t ep
alpha e s t <− c ( alpha est , alpha next )
beta e s t <− c (beta est , mean x/alpha next )
# go to next a lpha
alpha i n i t i a l <− alpha next }

alpha <− alpha next
beta <− mean x/alpha next
es t imate MLE<− data . frame ( alpha , beta )

24



return ( e s t imate MLE) }

Both the MME and MLE can be confirmed by using the preexisitng R Package EnvS-
tats. This allows us to use the egamma function which provides parameter estimates
using each individual claim data.

3. Weibull MME

weibull MME<−f unc t i on (CLAIM){
n<−l ength (CLAIM)
mean x<−mean(CLAIM)
s <− sd (CLAIM)
k i n i t i a l <−(mean x/ sq r t ( ( s ˆ2 ) ) ) ˆ1 . 086
# i n i t i a t e the convergence
converg<−10000
# i n i t i a t e two vec to r s to s t o r e alpha and beta in each step
k es t<−k i n i t i a l
lambda est<−mean x /(gamma(1+(1/ k i n i t i a l ) ) )
# Newton−Raphson
whi le ( converg >0.0000001){
#equat ion
eq<−((( s ˆ2)/(mean x )ˆ2)+1)∗gamma(1+(1/ k i n i t i a l ) )
∗gamma(1+(1/ k i n i t i a l ))−gamma(1+(2/ k i n i t i a l ) )
#f i r s t d e r i v a t i v e
der1<−2∗((( s ˆ2)/(mean x )ˆ2)+1)∗(digamma(1+(1/ k i n i t i a l ) )
∗(−1/( k i n i t i a l )ˆ2)∗gamma(1+(1/ k i n i t i a l ) ) )
−(digamma(1+(2/ k i n i t i a l ))∗(−2/( k i n i t i a l ) ˆ2 ) )
#c a l c u l a t e next k
k next<−k i n i t i a l −eq/der1
# get the convergence va lue
converg<−abs ( k next−k i n i t i a l )
# s t o r e e s t imato r s in each step
k es t<−c ( k es t , k next )
lambda est<−c ( lambda est , mean x /(gamma(1+(1/ k i n i t i a l ) ) ) )
# go to next k
k i n i t i a l <−k next }

k<−k next
lambda<−lambda est<−mean x /(gamma(1+(1/ k next ) ) )
estimate MLE<−data . frame (k , lambda )
re turn ( estimate MLE )}

weibull MME(CLAIM)

4. Weibull MLE

we ibu l l MLE<−function (CLAIM){
n<−length (CLAIM)
mean x<−mean(CLAIM)
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k i n i t i a l<− Previous est imated k
# i n i t i a t e the convergence
converg<−10000
# i n i t i a t e two v e c t o r s to s t o r e k and lambda in each s t ep
k e s t<−k i n i t i a l
lambda e s t<−( (1/n)
∗sum( (CLAIM)ˆk i n i t i a l ) ) ˆ ( 1/k i n i t i a l )
# Newton−Raphson
while ( converg >0.0000001){

#f i r s t d e r i v a t i v e
eq<−(1/k i n i t i a l )+(sum( log (CLAIM))/n)
−(sum( ( (CLAIM)ˆk i n i t i a l )
∗ ( log (CLAIM) ) )
/sum( (CLAIM)ˆk i n i t i a l ) )
#second d e r i v a t i v e
der1<−−(1/ ( k i n i t i a l )ˆ2)
+(((sum( ( (CLAIM)ˆk i n i t i a l )
∗ ( log (CLAIM) ) ) ) ˆ 2 )
/ ( (sum( (CLAIM)ˆk i n i t i a l ) ) ˆ 2 ) )
−(sum( ( (CLAIM)ˆk i n i t i a l )
∗ ( log (CLAIM))ˆ2 )
/sum( (CLAIM)ˆk i n i t i a l ) )
#ca l c u l a t e next k
k next<−k i n i t i a l −eq/der1
# ge t the convergence va lue
converg<−abs ( k next−k i n i t i a l )
# s to r e e s t ima to r s in each s t ep
k e s t<−c ( k est , k next )
lambda e s t<−c ( lambda est ,
( (1/n)∗ sum( (CLAIM)ˆk i n i t i a l ) ) ˆ ( 1/k next ) )
# go to next k
k i n i t i a l<−k next }

k<−k next
lambda<−lambda e s t<−( (1/n)
∗sum( (CLAIM)ˆk i n i t i a l ) ) ˆ ( 1/k next )
e s t imate MLE<−data . frame (k , lambda )
return ( e s t imate MLE) }

we ibu l l MLE(CLAIM)

Both the MME and MLE for Weibull can be confirmed by using the preexisting R
Package EnvStats. This allows us to use the eweibull function which provides parameter
estimates using each individual claim data.

5. Ages ANOVA/t-test

AgesTCA <− data . frame (c ( rep ( ’ A l l ’ ,dim( Al l ) [ 1 ] ) ,
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rep ( ’Age1 ’ ,dim(Age1 ) [ 1 ] ) ,
rep ( ’Age2 ’ ,dim(Age2 ) [ 1 ] ) , rep ( ’Age3 ’ ,dim(Age3 ) [ 1 ] ) ,
rep ( ’Age4 ’ ,dim(Age4 ) [ 1 ] ) , rep ( ’Age5 ’ ,dim(Age5 ) [ 1 ] ) ,
rep ( ’Age6 ’ ,dim(Age6 ) [ 1 ] ) ) ,
rbind ( Al l [ , 2 ] , Age1 [ , 2 ] , Age2 [ , 2 ] ,
Age3 [ , 2 ] , Age4 [ , 2 ] , Age5 [ , 2 ] , Age6 [ , 2 ] ) )
colnames (AgesTCA)<−c ( ’Age ’ , ’TCA’ )
boxplot (TCA˜Age , data=AgesTCA, ho r i z on t a l = TRUE)
t e s t 1 <− aov (TCA˜Age , data=AgesTCA)
summary( t e s t 1 )
pa i rw i s e . t . t e s t (AgesTCA$TCA,AgesTCA$Age ,
p . ad jus t . method=” bon f e r r on i ” )

6. Gender ANOVA

GenderTCA <− data . frame (c ( rep ( ’ A l l ’ ,dim( Al l ) [ 1 ] ) ,
rep ( ’ Female ’ ,dim( Female ) [ 1 ] ) , rep ( ’Male ’ ,dim(Male ) [ 1 ] ) ) ,
rbind ( Al l [ , 2 ] , Female [ , 2 ] , Male [ , 2 ] ) )
colnames (GenderTCA)<−c ( ’Gender ’ , ’TCA’ )
boxplot (TCA˜Gender , data=GenderTCA , ho r i z on t a l = TRUE)
t e s t 1 <− aov (TCA˜Gender , data=GenderTCA)
summary( t e s t 1 )

7. Time ANOVA/t-test

TimeTCA <− data . frame (c ( rep ( ’ A l l ’ ,dim( Al l ) [ 1 ] ) ,
rep ( ’ Early ’ ,dim( Early ) [ 1 ] ) , rep ( ’Mid ’ ,dim(Mid ) [ 1 ] ) ,
rep ( ’ Late ’ ,dim( Late ) [ 1 ] ) ) ,
rbind ( Al l [ , 2 ] , Early [ , 2 ] , Mid [ , 2 ] , Late [ , 2 ] ) )
colnames (TimeTCA)<−c ( ’Time ’ , ’TCA’ )
boxplot (TCA˜Time , data=TimeTCA, ho r i z on t a l = TRUE)
t e s t 1 <− aov (TCA˜Time , data=TimeTCA)
summary( t e s t 1 )
pa i rw i s e . t . t e s t (TimeTCA$TCA,TimeTCA$Time ,
p . ad jus t . method=” bon f e r r on i ” )

8. Region ANOVA

RegionTCA <− data . frame (c ( rep ( ’ A l l ’ ,dim( Al l ) [ 1 ] ) ,
rep ( ’SE ’ ,dim(SE ) [ 1 ] ) , rep ( ’NE ’ ,dim(NE) [ 1 ] ) ) ,
rbind ( Al l [ , 2 ] , SE [ , 2 ] ,NE[ , 2 ] ) )
colnames (RegionTCA)<−c ( ’ Region ’ , ’TCA’ )
boxplot (TCA˜Region , data=RegionTCA , ho r i z on t a l = TRUE)
t e s t 1 <− aov (TCA˜Region , data=RegionTCA)
summary( t e s t 1 )
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9. Generalized Plot

a <− c ( ac tua l data , s imulated data )
b <− c ( rep ( ’ Actual ’ , 10130) , rep ( ’ Estimated ’ , 10130))
df <− data . frame ( a , b )
colnames (df )<−c ( ’CLAIM ’ , ’Type ’ )
ggp lo t (df , aes ( x=CLAIM, c o l o r=Type))+geom density ( lwd=2)

10. Generalized KS Test

data1 <− CLAIM
data2 <− rgamma(n , shape , s c a l e )
ks . t e s t ( data1 , data2 )

11. Generalized KL Divergence

range (CLAIM)
seq1 <− seq (0 ,30000 ,2000)
seq2 <− seq (0 , 60000 , l ength . out = 16)
h1 <− h i s t (CLAIM, breaks = seq1 )
h2 <− h i s t (ESTIMATED, breaks = seq2 )
x <− rbind ( h1$counts , h2$counts )
KL(x , e s t . prob = ” emp i r i c a l ”)

12. Generalized Q-Q Plot

data1 <− CLAIM
data2 <− rgamma(n , shape , s c a l e )
qqplot ( data1 , data2 )
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