Document Type
Article
Digital Object Identifier (DOI)
10.1285/i15900932v29n1supplp135
Journal Title
Note di Matematica
Publication Date
2009
Abstract
Let π = πq denote a finite projective plane of order q, and let G = Levi(π) be the bipartite point-line incidence graph of π. For k ≥ 3, let c2k(π) denote the number of cycles of length 2k in G. Are the numbers c2k(π) the same for all πq? We prove that this is the case for k = 3, 4, 5, 6 by computing these numbers.
Publisher Statement
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.
Recommended Citation
Lazebnik, Felix, Keith E. Mellinger, and Oscar Vega. “On the Number of k-Gons in Finite Projective Planes.” Note di Matematica 29, suppl. 1 (2009): 135–52. https://doi.org/10.1285/i15900932v29n1supplp135.
Comments
The definitive article is located on the Note di Matematica website at: http://siba-ese.unisalento.it/index.php/notemat/article/view/11128.